


(a) 
$$R - C \swarrow OH$$
 (b)  $R - C \swarrow OH$ 

(c) 
$$R - C \swarrow O$$
  
H (d) None of these

| 12. | Acetoacetic ester behaves as                                       |                 |                    | [CPMT 1988]       |
|-----|--------------------------------------------------------------------|-----------------|--------------------|-------------------|
|     | (a) An unsaturated hydroxy c                                       | ompour          | nd                 |                   |
|     | (b) A keto compound                                                |                 |                    |                   |
|     | <ul><li>(c) Both of these ways</li><li>(d) None of these</li></ul> |                 |                    |                   |
| 10  |                                                                    |                 | aanta              |                   |
| 13. | The general formula $(RCO)_2 O$                                    |                 |                    |                   |
|     | (a) An ester                                                       |                 | A ketone           | 2; MP PMT 1996]   |
|     | (c) An ether                                                       | (d)             | An acid anhyc      | lride             |
| 14. | A tribasic acid is                                                 | (4)             | , in dela annye    |                   |
|     | (a) Oxalic acid                                                    | (b)             | Tartaric acid      |                   |
|     | (c) Lactic acid                                                    | (d)             | Citric acid        |                   |
| 15. | Amphiphilic molecules are nor                                      | nally as        | sociated with      |                   |
|     | (a) Isoprene based polymers                                        |                 |                    | [Orissa JEE 1997] |
|     | (b) Soaps and detergents                                           |                 |                    |                   |
|     | (c) Nitrogen based fertilizers                                     | e.g. ure        | а                  |                   |
|     | (d) Pain relieving medicines s                                     | uch as a        | aspirin            |                   |
| 16. | Wax are long chain compounds                                       | s belong        | ing to the class   |                   |
|     | () $A$ :1                                                          | (1)             | A1 1 1             | [CPMT 1982, 93]   |
|     | (a) Acids<br>(c) Esters                                            | · · ·           | Alcohols<br>Ethers |                   |
| 17. | Glycine may be classed as all of                                   | · · ·           |                    |                   |
| .,. | Civence may be classed as an of                                    |                 | lowing except      | [JIPMER 1997]     |
|     | (a) A base                                                         | (b)             | An acid            | 5                 |
|     | (c) A zwitter ion                                                  | (d)             | Optically activ    | ve acid           |
| 18. | Which of the following is not a                                    |                 |                    | [CPMT 1988]       |
|     | (a) Stearic acid                                                   |                 | Palmitic acid      |                   |
|     | (c) Oleic acid                                                     | (d)             | Phenyl acetic      | acid              |
| 19. | Vinegar obtained from canesug                                      | ar cont         | ains               |                   |
|     |                                                                    | [CP/            | MT 1980; DPMT      | 1982; KCET 1992;  |
|     |                                                                    |                 | MP PMT 1           | 994; AIIMS 1999]  |
|     | (a) Citric acid                                                    | (b)             | Lactic acid        |                   |
|     | (c) Acetic acid                                                    |                 | Palmitic acid      |                   |
| 20. | The general formula for monoc                                      | arboxyl         | ic acids is        |                   |
|     |                                                                    |                 |                    | [CPMT 2003]       |
|     | (a) $C_n H_n COOH$                                                 | (b)             | $C_n H_{2n+1} CO$  | ОН                |
|     | (c) $C_n H_{2n-1} COOH$                                            | (d)             | $C_n H_{2n} O_2$   |                   |
| 21. | Number of oxygen atoms in a a                                      |                 |                    |                   |
| 21. | (a) 1                                                              | (b)             | 2                  |                   |
|     | (c) 3                                                              | (d)             | 4                  |                   |
| 22. | Urea is                                                            | (u)             | 4                  | [CPMT 1984]       |
|     | (a) Monoacidic base                                                | (b)             | Diacidic base      | [CIMI 1904]       |
|     | (c) Neutral                                                        | (d)             |                    |                   |
| 23. | Fats and oils are                                                  | ( <b>u</b> )    | , implioterie      | [CPMT 1990]       |
| -0. | (a) Acids                                                          | (b)             | Alcohols           | [enni 1990]       |
|     | (c) Esters                                                         | (d)             | Hydrocarbons       |                   |
| 24. | The general formulas $C_n H_{2n} C_n$                              | • • •           |                    |                   |
| 24. | The general formulas $C_n T_{2n}$                                  | $\gamma_2$ cour | a be for open a    |                   |
|     | (a) Diketones                                                      | (b)             | Carboxylic aci     | [AIEEE 2003]      |
|     | <ul><li>(a) Diketones</li><li>(c) Diols</li></ul>                  | (d)             | Dialdehydes        | us                |
|     | . ,                                                                | ( <b>u</b> )    | Dialdenydes        |                   |
|     | O                                                                  |                 |                    |                   |
| 25. | H - C - Cl is called                                               |                 |                    |                   |
|     | (a) Acetyl chloride                                                | (b)             | Formyl chlorid     | le                |
|     | (c) Chloretone                                                     | (d)             | Oxochloromet       | hane              |
| 26. | Urea                                                               |                 |                    |                   |
|     | (a) Is an amide of carbonic ac                                     | cid             |                    |                   |
|     | (b) It is diamide of carbonic a                                    |                 |                    |                   |
|     | (c) Gives carbonic acid on hy                                      | drolysis        |                    |                   |
|     | (d) Resembles carbonic acid                                        |                 |                    |                   |

🕀 www.studentbro.in

Get More Learning Materials Here :

| 27. | Which of the following acids is is (a) Succinic acid                 | omer       | ic with phthalic acid                |
|-----|----------------------------------------------------------------------|------------|--------------------------------------|
|     | (b) Salicylic acid                                                   |            |                                      |
|     | (c) 1, 4-benzene dicarboxylic                                        | aci        | d                                    |
|     | (d) Methyl benzoic                                                   |            |                                      |
| 28. | The ester among the following is $( )  C  I  I  I  I  I  I  I  I  I$ | (1)        | [Kerala PMT 2003]                    |
|     | <ul><li>(a) Calcium lactate</li><li>(c) Sodium acetate</li></ul>     | (b)<br>(d) | Ammonium acetate<br>None of these    |
| 29. | Sodium or potassium salts of high                                    | · · ·      |                                      |
| -9. | boardin of potaborain bara of hig.                                   |            | [MP PET 2003]                        |
|     | (a) Soaps                                                            | (b)        | Terpenes                             |
|     | (c) Sugars                                                           | (d)        | Alkaloids                            |
| 30. | Formamide is                                                         |            |                                      |
|     | (a) $HCONH_2$                                                        | (b)        | $CH_3CONH_2$                         |
|     | (c) $HCOONH_4$                                                       | (d)        | $(HCHO + NH_3)$                      |
| 31. | Oleic, stearic and palmitic acids a                                  | re         | [CPMT 1997]                          |
|     | (a) Nucleic acids                                                    | (b)        | Amino acids                          |
|     | (c) Fatty acids                                                      | (d)        | None of these                        |
| 32. | Which one is called ethanoic acid                                    |            | [CPMT 1997]                          |
|     | (a) HCOOH                                                            | (b)        | CH <sub>3</sub> COOH                 |
|     | (c) $CH_3CH_2COOH$                                                   | (d)        | $CH_{3}CH_{2}CH_{2}COOH$             |
| 33. | Vinegar is                                                           |            | [CPMT 1997]                          |
|     | (a) HCHO                                                             | (b)        | НСООН                                |
|     | (c) $CH_3CHO$                                                        | (d)        | CH <sub>3</sub> COOH                 |
| 34. | Which of these do not contain -                                      | cod        | OH group                             |
|     |                                                                      |            | [CPMT 1997]                          |
|     | (a) Aspirin                                                          | (b)        | Benzoic acid                         |
| or  | (c) Picric acid<br>Vinegar obtained from sugarcane                   | (d)        | Salicylic acid                       |
| 35. |                                                                      |            | [AFMC 2005]                          |
|     | (a) $CH_3COOH$                                                       | . ,        | НСООН                                |
|     | (c) $C_6H_5COOH$                                                     | (d)        | CH <sub>3</sub> CH <sub>2</sub> COOH |
| 36. | Carbolic acid is                                                     |            | [AFMC 2005]                          |
|     | (a) $C_6H_5CHO$                                                      | (b)        | $C_6H_6$                             |
|     | (c) $C_6H_5COOH$                                                     | (d)        | $C_6H_5OH$                           |
| 37. | The most acidic of the following i                                   | is         | [] & K 2005]                         |
|     | (a) ClCH <sub>2</sub> COOH                                           | (b)        | C <sub>6</sub> H <sub>5</sub> COOH   |
|     | (c) $CD_3COOH$                                                       | (d)        | CH <sub>3</sub> CH <sub>2</sub> COOH |
| 38. | Which is most reactive of the foll                                   |            | <i>y</i> <b>2</b>                    |
|     | (a) Ethyl acetate                                                    | (b)        |                                      |
|     | (c) Acetamide                                                        | • •        | Acetyl chloride                      |
|     | (-)                                                                  | (4)        |                                      |

## Preparation of Carboxylic Acids and Their Derivatives

1. Hydrolysis of  $CH_3CH_2NO_2$  with 85%  $H_2SO_4$  gives

| (a) | $CH_3CH_2OH$   | (b) $C_2 H_6$  |  |
|-----|----------------|----------------|--|
| (c) | $CH_3CH = NOH$ | (d) $CH_3COOH$ |  |
|     | c              |                |  |

- When formic acid reacts with PCl<sub>5</sub> it forms [MNR 1982]

   (a) Formyl chloride
   (b) Acetyl chloride
   (c) Methyl chloride
   (d) Propionyl chloride

   Laboratory method for the preparation of acetyl chloride is

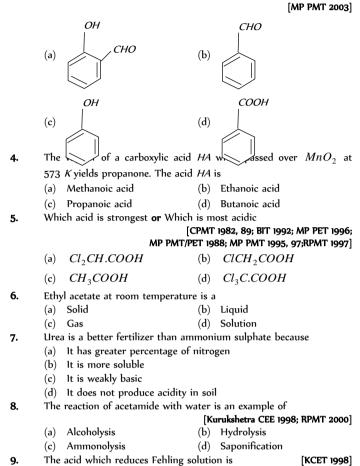
   [RPMT 2003]
  - (a)  $CH_3COOH + SOCl_2 \rightarrow CH_3COCl_2$
  - (b)  $CH_3COOH + PCl_3 \rightarrow CH_3COCl$
  - (c)  $CH_3COONa + PCl_3 \rightarrow CH_3COCl$

|              | (d) All of these<br>Tischarks reaction yields actor is                                                               | in the presence of catalyst which is                                                                                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.           | (a) $LiAlH_4$                                                                                                        | (b) <i>N</i> -bromosuccinamide                                                                                                                            |
|              | (c) $Al(OC_2H_5)_3$                                                                                                  | (d) $Zn - Hg / HCl$                                                                                                                                       |
| 5.           | Acetic acid is obtained when                                                                                         | [NCERT 1975; CPMT 1977]                                                                                                                                   |
| J.           |                                                                                                                      | with potassium permanganate                                                                                                                               |
|              |                                                                                                                      | in the presence of calcium formate                                                                                                                        |
|              | (c) Acetaldehyde is oxidised sulphuric acid                                                                          | l with potassium dichromate and                                                                                                                           |
|              | (d) Glycerol is heated with sult                                                                                     | lphuric acid                                                                                                                                              |
| 6.           | Acetic acid is manufactured by t                                                                                     |                                                                                                                                                           |
|              | (a) Ethanol                                                                                                          | [CPMT 1985]<br>(b) Methanol                                                                                                                               |
|              | (c) Ethanal                                                                                                          | (d) Methanal                                                                                                                                              |
| 7.           | $CO + NaOH \rightarrow$                                                                                              | [CPMT 1997; KCET 1999]                                                                                                                                    |
|              | (a) HCOONa                                                                                                           | (b) $C_2 H_2 O_4$                                                                                                                                         |
|              | (c) HCOOH                                                                                                            | (d) $CH_3COOH$                                                                                                                                            |
| 8.           | Carboxylic acids react with diazo                                                                                    |                                                                                                                                                           |
|              | (a) Amine                                                                                                            | [MP PMT/PET 1988; MP PMT 1990]<br>(b) Alcohol                                                                                                             |
|              | (c) Ester                                                                                                            | (d) Amide                                                                                                                                                 |
| 9.           | $C_2H_2 \xrightarrow{H_gOH \ 1\%} A \xrightarrow{[O]}$                                                               | $\rightarrow B$ , B is                                                                                                                                    |
|              | $H_2SO_4$                                                                                                            | [CBSE PMT 1991; BHU 1995]                                                                                                                                 |
|              | (a) An acid                                                                                                          | (b) An aldehyde                                                                                                                                           |
|              | (c) A ketone                                                                                                         | (d) Ethanol                                                                                                                                               |
| 10.          | Reimer-Tiemann reaction involve                                                                                      | ves a<br>[MP PET 1997]                                                                                                                                    |
|              | (a) Carbonium ion intermediat                                                                                        |                                                                                                                                                           |
|              | (b) Carbene intermediate                                                                                             |                                                                                                                                                           |
|              | (c) Carbanion intermediate                                                                                           |                                                                                                                                                           |
| 11.          | (d) Free radical intermediate<br>The product <i>D</i> of the reaction                                                |                                                                                                                                                           |
|              | •                                                                                                                    | $\rightarrow (B) \xrightarrow{NH_3} (C) \xrightarrow{\Delta} (D)$ is                                                                                      |
|              | $CII_3CI \longrightarrow (A)$                                                                                        | [MP PET 1997]                                                                                                                                             |
|              | (a) $CH_3CH_2NH_2$                                                                                                   | (b) $CH_3CN$                                                                                                                                              |
|              | (c) $HCONH_2$                                                                                                        | (d) $CH_3CONH_2$                                                                                                                                          |
| 10           |                                                                                                                      |                                                                                                                                                           |
| 12.          | Which of the following on hydro                                                                                      | BHU 1997                                                                                                                                                  |
|              | (a) $CH_3CN$                                                                                                         | (b) <i>CH</i> <sub>3</sub> <i>OH</i>                                                                                                                      |
|              | (c) $C_2H_5OH$                                                                                                       | (d) $C_2H_5NH_2$                                                                                                                                          |
| 10           |                                                                                                                      |                                                                                                                                                           |
| 13.          | When benzyl alcohol is oxidi                                                                                         |                                                                                                                                                           |
|              | obtained is<br>(a) Benzaldehyde                                                                                      | [ <b>SCRA 1991</b> ]<br>(b) Benzoic acid                                                                                                                  |
|              | (c) $CO_2$ and $H_2O$                                                                                                | (d) None of these                                                                                                                                         |
| 14.          | (c) $\cos_2$ and $\pi_2 \circ$                                                                                       | (d) None of these                                                                                                                                         |
|              | Which of the following gives her                                                                                     | nzoic acid on ovidation                                                                                                                                   |
|              | Which of the following gives ber                                                                                     |                                                                                                                                                           |
| · <b>·</b> · | Which of the following gives ber<br>(a) Chlorophenol                                                                 | enzoic acid on oxidation<br>[ <b>CBSE PMT 1996</b> ]<br>(b) Chlorotoluene                                                                                 |
|              |                                                                                                                      | [CBSE PMT 1996]                                                                                                                                           |
| 15.          | <ul><li>(a) Chlorophenol</li><li>(c) Chlorobenzene</li></ul>                                                         | [CBSE PMT 1996]<br>(b) Chlorotoluene                                                                                                                      |
|              | <ul><li>(a) Chlorophenol</li><li>(c) Chlorobenzene</li></ul>                                                         | [CBSE PMT 1996]<br>(b) Chlorotoluene<br>(d) Benzyl chloride                                                                                               |
|              | (a) Chlorophenol<br>(c) Chlorobenzene<br>$(CH_3)_2 CO \xrightarrow{NaCN} A \xrightarrow{H}$                          | [CBSE PMT 1996]<br>(b) Chlorotoluene<br>(d) Benzyl chloride<br>$H_{3}O^{+} \rightarrow B$ In the above sequence of<br>(CPMT 2000]                         |
|              | (a) Chlorophenol<br>(c) Chlorobenzene<br>$(CH_3)_2 CO \xrightarrow{NaCN} A \xrightarrow{H}$<br>reactions A and B are | [CBSE PMT 1996]<br>(b) Chlorotoluene<br>(d) Benzyl chloride<br>$\overset{H_3O^+}{\Delta} B$ In the above sequence of<br>[CPMT 2000]<br>$T_3)_2 C(OH)COOH$ |

- (c)  $(CH_3)_2 C(OH)CN, (CH_3)_2 CHCOOH$
- (d)  $(CH_3)_2 C(OH)CN, (CH_3)_2 C = O$

CLICK HERE

[KCET 1996]


(a)  $N_2O$ 16. Two moles of acetic acid are heated with  $P_2O_5$ . The product (b)  $NH_3$ formed is [MP PET/PMT 1988] (d)  $H_2 NCONH_2$ (c)  $CH_3 NH_2$ (a) 2 moles of ethyl alcohol 27. Rearrangement of an oxime to an amide in the presence of strong Formic anhydride (b) acid is called [Kerala CET 2000] (c) Acetic anhydride (a) Curtius rearrangement (b) Fries rearrangement (d) 2 moles of methyl cyanide Backman rearrangement (d) Sandmeyer reaction (c) Which reagent will bring about the conversion of carboxylic acids 28 Formic acid is obtained when [NCERT 1974] 17. [CBSE PMT 2000] into esters (a) Calcium acetate is heated with conc.  $H_2SO_4$ (a)  $C_2H_5OH$ (b) Dry  $HCl + C_2H_5OH$ (b) Calcium formate is heated with calcium acetate (c)  $LiAlH_4$ (d)  $Al(OC_2H_5)_3$ (c) Glycerol is heated with oxalic acid at  $110^{\circ} C$ The acid formed when propyl magnesium bromide is treated with 29. (d) Acetaldehyde is oxidised with  $K_2Cr_2O_7$  and  $H_2SO_4$ carbon dioxide is [CPMT 1982, 84, 86; Pb. PMT 1998] 18. Acetyl chloride cannot be obtained by treating acetic acid with  $[ \overset{\text{[CPMT 1985]}}{(a)} H_7 COOH$ (b)  $C_2H_5COOH$ (a)  $CHCl_3$ (b)  $SOCl_2$ (c) Both (a) and (b) (d) None of the above (d)  $PCl_5$ (c)  $PCl_3$ 30.  $CO_2$  on reaction with ethyl magnesium bromide gives [BHU 1983] o-xylene when oxidised in presence of  $V_2O_5$  the product is 19. (a) Ethane (b) Propanoic acid (a) Benzoic acid (b) Phenyl acetic acid (c) Acetic acid (d) None of these Acetic anhydride is obtained from acetyl chloride by the reaction of (c) Phthalic acid (d) Acetic acid 31. 20. The reaction (a)  $P_2O_5$ (b)  $H_2SO_4$  $CH_3CH = CH_3 \xrightarrow{CO+H_2O} CH_3 - CH - CH_3$ (c)  $CH_3COONa$ (d)  $CH_3COOH$ Hydrolysis of acetamide produces 32. СООН [DPMT 1984; MP PMT 1994; MP PET 2001] is known as [MP PMT 2002] (a) Acetic acid (b) Acetaldehyde (c) Methylamine (d) Formic acid (a) Wurtz reactions Ethyl acetate is obtained when methyl magnesium iodide reacts with [Tamil Nad 33. (b) Koch reaction (a) Ethyl formate (b) Ethyl chloroformate (c) Clemenson's reduction (c) Acetyl chloride (d) Carbon dioxide Kolbe's reaction (d) By aerial oxidation, which one of the following gives phthalic acid[Tamil Nadu CET 2002] 21. [BIT 1992] (a) Naphthalene (b) Banzene (a) Acetic acid (b) Acetone (c) Mesitylene (d) Toluene (d) Sodium formate (c) Acetic anhydride MgBr Ammonium acetate reacts with acetic acid at  $110^{\circ}C$  to form 35. (a) Acetamide (b) Formamide (i) CO 2 22.  $\rightarrow P$  In the reaction, product P is (d) Urea (c) Ammonium cvanate (ii)H<sub>2</sub>O 36. Tischancko reaction is used for preparation of [CBSE PMT 2002] (a) Ether (b) Ester СНО СООН (c) Amide (d) Acid anhydride The silver salt of a fatty acid on refluxing with an alkyl halide gives 37. (b) (a) [KCET 2004] an (a) Acid (b) Ester (c) Ether (d) Amine 38. Which reaction is used for the preparation of  $\alpha$  – Bromoacetic acid [MP PET 2004; MP PET/PMT 1998] ? (c) Kolbe's Reaction (a) Glacial acetic is obtained by [KCET 2002] 23. Reimer-Tiemann Reaction (b) (a) Distilling vinegar (c) Hell volhard Zelinsky Reaction Crystallizing separating and melting acetic acid (b) (d) Perkin's Reation Treating vinegar with dehydrating agent (c) Tertiary alcohols (3°) having atleast four carbon atoms upon 39. (d) Chemically separating acetic acid drastic oxidation yield carboxylic acid with In esterification,  $OH^-$  ion for making  $H_2O$  comes from 24 [MH CET 2004] [CPMT 1996] One carbon atom less (a) (a) Acid (b) Alcohol (b) Two carbon atoms less (d) Carbohydrate (c) Ketone (c) Three carbon atom less Heating a mixture of ethyl alcohol and acetic acid in presence of 25. (d) All the above three options are correct conc.  $H_2SO_4$  produces a fruity smelling compound. This reaction 40. When succinic acid is heated, product formed is is called [AIIMS 1996] [Pb. CET 2000] (a) Neutralisation (b) Ester hydrolysis (a) Succinic anhydride (b) Acetic acid (c) Esterification (d) Williamson's synthesis (c)  $CO_2$  and methane (d) Propionic acid 26. Product formed by heating a mixture of ammonium chloride and potassium cyanate is

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

| 41.          | In the reaction, $C_6H_5OH$ -                                               | $\xrightarrow{NaOH} (A) -$         | $\xrightarrow{CO_2} (B)$ | 3.            | What will be the product, wh<br>Tiemann's process, is deoxidis                      |                                         |
|--------------|-----------------------------------------------------------------------------|------------------------------------|--------------------------|---------------|-------------------------------------------------------------------------------------|-----------------------------------------|
|              | $\xrightarrow{HCl}$ (C), the compound                                       | l ( <i>C</i> ) is                  | [Pb. CET 2001            | ]             |                                                                                     |                                         |
|              | (a) Benzoic acid                                                            | (b) Salicyla                       | aldehyde                 |               | ОН                                                                                  | СНО                                     |
|              | (c) Chlorobenzene                                                           | (d) Salicyli                       | c acid                   |               | (-) ,СНО                                                                            |                                         |
| 42.          | When an acyl chloride is here<br>the product is                             | [DCE 20                            | 003]                     | l,            | (a) Cho                                                                             | (b)                                     |
|              | (a) An ester<br>(c) An alkene                                               | (b) An anh<br>(d) An alde          | 5                        |               |                                                                                     |                                         |
| 40           | The compound $X$ , in the re                                                | ( )                                | enyde                    |               | OH<br>I                                                                             | СООН                                    |
| 43.          | •                                                                           |                                    |                          |               | (c)                                                                                 | (d)                                     |
|              | $X \xrightarrow{CH_3MgI} Y \xrightarrow{hydrolysi}$                         | $\longrightarrow Mg(OH)I +$        |                          |               |                                                                                     |                                         |
|              |                                                                             |                                    | [Pb. CET 2003            | ] 4.          | The of a carboxylic a                                                               | $\sim$                                  |
|              | (a) $CH_3CHO$                                                               | (b) $CO_2$                         |                          |               | 573 K yields propanone. The                                                         |                                         |
|              | (c) $(CH_3)_2 CO$                                                           | (d) HCH                            | 0                        |               | (a) Methanoic acid                                                                  | (b) Ethanoic ad                         |
| 44.          | $CH_3CONH_2$                                                                | $\xrightarrow{l} X$                | [Pb. CET 2003            | ] 5.          | <ul> <li>(c) Propanoic acid</li> <li>Which acid is strongest or Which</li> </ul>    | (d) Butanoic ad                         |
| ***          |                                                                             | , 11                               |                          | J J.          | Which acid is strongest <b>or</b> wh                                                | [CPMT 1982, 89; BIT                     |
|              | (a) CH <sub>3</sub> COOH                                                    | (b) $CH_3C$                        | $CO N H_3 Cl^-$          |               |                                                                                     | MT/PET 1988; MP PMT                     |
|              | (c) $CH_3 NH_2$                                                             | (d) $CH_3$                         | CHO                      |               | (a) $Cl_2CH.COOH$                                                                   | (b) $ClCH_2Cc$                          |
| 45.          | Primary aldehyde on oxidatio                                                |                                    |                          |               | (c) CH <sub>3</sub> COOH                                                            | (d) $Cl_3C.CO$                          |
|              | (a) Esters                                                                  |                                    | sylic acid               | 6.            | Ethyl acetate at room tempera                                                       |                                         |
|              | (c) Ketones                                                                 | (d) Alcoho                         | ls                       |               | (a) Solid                                                                           | (b) Liquid                              |
| 46.          | Toluene is oxidised to benzoi                                               |                                    | _                        | ı <b>7</b> .  | (c) Gas<br>Urea is a better fertilizer than                                         | (d) Solution                            |
|              |                                                                             |                                    | [BHU 2004; CPMT 1985     | ] /.          | (a) It has greater percentage                                                       | •                                       |
|              | (a) $KMnO_4$                                                                | (b) $K_2Cr$                        |                          |               | (b) It is more soluble                                                              | U                                       |
|              | (c) $H_2 SO_4$                                                              | (d) Both (a                        | a) and (b)               |               | (c) It is weakly basic                                                              |                                         |
| 47.          |                                                                             |                                    | _                        | 8.            | (d) It does not produce acid<br>The reaction of acetamide wit                       |                                         |
| М            | $eO \longrightarrow CHO_{t}(X) \longrightarrow CHO_{t}(X)$                  | $\xrightarrow{CH_3COONa}_{H_3O^+}$ | К сн=снсоон              | 0.            | (a) Alcoholysis                                                                     | <b>Kurukshetra CE</b><br>(b) Hydrolysis |
|              | The compound $(X)$ is                                                       |                                    | /<br>[11T 2005           | ]             | (c) Ammonolysis                                                                     | (d) Saponificat                         |
|              | (a) CH <sub>2</sub> COOH                                                    | (b) BrCH                           | – СООН                   | 9.            | The acid which reduces Fehlir                                                       | ·                                       |
|              | (c) $(CH,CO),O$                                                             | (d) <i>CHO</i> -                   | - СООН                   |               | (a) Methanoic acid                                                                  | (b) Ethanoic ac                         |
| 48.          | Salicylic acid is prepared from                                             | n phenol by                        | [AFMC 2005               | ]             | (c) Butanoic acid                                                                   | (d) Propanoic                           |
|              | <ul><li>(a) Reimer Tiemann reaction</li><li>(b) Kolbe's reaction</li></ul>  |                                    |                          | 10.           | $O < CH_2 - O CH_2 CH_2 - O CH_2$                                                   |                                         |
|              | <ul><li>(c) Kolbe-electrolysis reaction</li><li>(d) None of these</li></ul> | on                                 |                          |               | The above shown polymer is                                                          |                                         |
| 49.          | Acetic acid will be obtained o                                              | on oxidation of                    | [] & K 2005              | 1             | allowed to stand. It is a white<br>(a) Trioxane                                     | (b) Formose                             |
| Ŧ <i>J</i> . | (a) Ethanol                                                                 | (b) Propan                         |                          | 1             | (c) Paraformaldehyde                                                                | (d) Metaldehyd                          |
|              | (c) Methanal                                                                | (d) Glyoxa                         | 1                        | 11.           | What will happen if $LiAlH_4$                                                       | is added to an ester                    |
|              | Properties of Carbo                                                         | •                                  | and Their                |               | <ul><li>(a) Two units of alcohol are</li><li>(b) One unit of alcohol and</li></ul>  |                                         |
|              | Deri                                                                        | vatives                            |                          |               | <ul><li>(b) One unit of alcohol and</li><li>(c) Two units of acids are of</li></ul> |                                         |
| -            |                                                                             |                                    |                          |               | (d) None of these                                                                   |                                         |
| •            |                                                                             | has the smallest o                 | dissociation constant [  | IIT-JEE (Scre | eninghand isole is heated with <i>i</i>                                             | HI, the product is                      |
|              | (a) CH <sub>3</sub> CHFCOOH                                                 | (b) $FCH_2$                        | $_2CH_2COOH$             |               | (a) Phenyl jedide and methy                                                         | l iodide                                |
|              | (c) $BrCH_2CH_2COOH$                                                        | (d) $CH_3C$                        | CHBrCOOH                 |               | <ul><li>(a) Phenyl iodide and methy</li><li>(b) Phenol and methanol</li></ul>       | Tiodide                                 |
| 2.           | What is obtained, when                                                      |                                    |                          |               | (c) Phenyl iodide and metha                                                         | mol                                     |
| •            | succinimide                                                                 | properte is the                    | [MP PMT 2003             |               | (d) Methyl iodide and pheno                                                         |                                         |
|              | (a) $CH_3 - C = CH_2$                                                       | (b) BrCH                           | $H_2 - CH = CH_2$        | 13.           | When $CH_3COOH$ reacts v                                                            | with $CH_3 - Mg - \lambda$              |
|              |                                                                             | (-)                                | 2 2                      |               | (a) $CH_3COX$ is formed                                                             | (b) Hydrocarbo                          |
|              | Br                                                                          |                                    |                          |               | (c) Acetone is formed                                                               | (d) Alcohol is f                        |
|              |                                                                             |                                    |                          |               | $\mathbf{y}_{1}$                                                                    | 1 1/1 1                                 |





will be the product, when carboxy phenol, obtained by Reimer

$$O < CH_2 - O \\ CH_2 - O > CH_2$$

bove shown polymer is obtained when a carbon compound is ed to stand. It is a white solid. The polymer is

- Trioxane (b) Formose Paraformaldehyde (d) Metaldehyde
- will happen if  $LiAlH_4$  is added to an ester [CBSE PMT 2000]
  - Two units of alcohol are obtained
  - One unit of alcohol and one unit of acid is obtained
  - Two units of acids are obtained
  - None of these

Ethers

- Phenyl iodide and methyl iodide
- Phenol and methanol
- Phenyl iodide and methanol
- Methyl iodide and phenol
- $CH_3COOH$  reacts with  $CH_3 Mg X$ [BVP 2003]
  - $CH_3COX$  is formed (b) Hydrocarbon is formed
  - Acetone is formed (d) Alcohol is formed
- Which class of compounds shows H-bonding even more than in 14. alcohols
  - (a) Phenols (b) Carboxylic acids
    - (d) Aldehydes

**CLICK HERE** 

(c)



[CET Pune 1998]

| 15  | When propagamide reacts with Br and                                                                     | A NaOH than which of                                                       |        | (c) More acidic (d) None                                                                                   |
|-----|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------|
| 15. | When propanamide reacts with $Br_2$ and<br>the following compound is formed[ <b>Manipa</b> ]            |                                                                            | 29.    | Acetic anhydride reacts with excess of ammonia to form                                                     |
|     |                                                                                                         | ppyl alcohol                                                               |        | [MP PET 1992]                                                                                              |
|     | (c) Propyl amine (d) Eth                                                                                |                                                                            |        | (a) $2CH_3COONH_4$                                                                                         |
| 16. | Hydrolysis of an ester gives a carboxyli                                                                | ic acid which on Kolbe's                                                   |        | (b) $2CH_3CONH_2$                                                                                          |
|     | electrolysis yields ethane. The ester is                                                                | CET 1007 Maninal DMT 2001                                                  |        | (c) $CH_3CONH_2 + CH_3COONH_4$                                                                             |
|     | · · · · · · · · · · · · · · · · · · ·                                                                   | CET 1997; Manipal PMT 2001]<br>hthyl ethanoate                             |        | (d) 2 <i>CH</i> <sub>3</sub> <i>COOH</i>                                                                   |
|     | (c) Propylamine (d) Eth                                                                                 | ylamine                                                                    | 30.    | In the following converge of reactions, what is D                                                          |
| 17. | On prolonged heating of ammonium cyana                                                                  | ate or urea, we get[DPMT 1982; C                                           | CPMT 1 | 979; MP PMT 1996]                                                                                          |
|     | (a) $N_2$ (b) $CC$                                                                                      |                                                                            |        | $ \underbrace{[O]}_{A} \xrightarrow{SOCl_2} B \xrightarrow{NaN_3} C \xrightarrow{Heat} D $                 |
|     |                                                                                                         | nmonium carbonate                                                          |        |                                                                                                            |
| 18. | In the Gabriel's phthalimide synthesis, phtha                                                           |                                                                            |        | (a) Primary amine                                                                                          |
|     | (a) $C_2H_5I/KOH$ (b) Eth                                                                               | nanolic <i>Na</i>                                                          |        | (b) An amide                                                                                               |
|     | (c) Ethanol and $H_2SO_4$ (d) Eth                                                                       | ner and LiAlH4                                                             |        | (c) Phenyl isocyanate                                                                                      |
| 19. | Which of the following is the strongest acid                                                            |                                                                            |        | (d) A chain lengthened hydrocarbon                                                                         |
|     | (a) $CH_3COOH$ (b) $BH$                                                                                 | rCH <sub>2</sub> COOH                                                      | 31.    | Hydrolytic reaction of fats with caustic soda is known as<br>[MP PMT/PET 1988; AMU 1988;                   |
|     | (c) $ClCH_2COOH$ (d) $Fe$                                                                               | CH <sub>2</sub> COOH                                                       |        | [/WI / WI / 1900, / WI 1900,<br>KCET 2000; MP PET 2001]                                                    |
| 20. | Which of the following reduces Tollen's rea                                                             | agent                                                                      |        | (a) Esterification (b) Saponification                                                                      |
|     |                                                                                                         | [MP PMT 1991]                                                              |        | (c) Acetylation (d) Carboxylation                                                                          |
|     | (a) Acetic acid (b) Cit<br>(c) Oxalic acid (d) For                                                      | ric acid<br>mic acid                                                       | 32.    | In the reaction $I_{iA}H_{i}$ $\dots$ $I_{a}+N_{a}OH$ $\dots$ $A_{a}(D_{a})$                               |
| 21. | Oxalic acid may be distinguished from tart                                                              |                                                                            |        | $CH_{3}COOH \xrightarrow{LiAIH_{4}} (A) \xrightarrow{I_{2}+NaOH} (B) \xrightarrow{Ag(Dust)} (C)$           |
|     | (a) Sodium bicarbonate solution                                                                         | 5                                                                          |        | the final product (C) is (1) $C$ $C$ $C$ $C$                                                               |
|     | (b) Ammonical silver nitrate solution                                                                   |                                                                            |        | (a) $C_2 H_5 I$ (b) $C_2 H_5 OH$                                                                           |
|     | (c) Litmus paper<br>(d) Phenolebthalain                                                                 |                                                                            |        | (c) $C_2H_2$ (d) $CH_3COCH_3$                                                                              |
| 22. | (d) Phenolphthalein<br>The reaction of <i>HCOOH</i> with conc. $H_2SC$                                  | ) gives                                                                    | 33.    | Reaction of ethyl formate with excess of $CH_3MgI$ followed by                                             |
| 44. |                                                                                                         | 94 gives<br>9; MP PET 1995; AllMS 2000;                                    |        | hydrolysis gives [IIT (Screening) 1992]                                                                    |
|     | • • • • •                                                                                               | Manipal 2001; Pb. CET 2002 ]                                               |        | (a) <i>n</i> -propyl alcohol (b) Ethanal                                                                   |
|     | (a) <i>CO</i> <sub>2</sub> (b) <i>CC</i>                                                                | )                                                                          | 34.    | (c) Propanal (d) Isopropyl alcohol<br>Of the following four reactions, formic and acetic acids differ in   |
|     | (c) Oxalic acid (d) Ace                                                                                 |                                                                            | 54.    | which respect [CPMT 1990, 93]                                                                              |
| 23. | Sulphonation of benzoic acid produces mai                                                               | inly [CPMT 1982]                                                           |        | (a) Replacement of hydrogen by sodium                                                                      |
|     | <ul> <li>(a) <i>o</i>-sulphobenzoic acid</li> <li>(b) <i>m</i>-sulphobenzoic acid</li> </ul>            |                                                                            |        | (b) Formation of ester with alcohol                                                                        |
|     | (c) <i>p</i> -sulphobenzoic acid                                                                        |                                                                            |        | <ul><li>(c) Reduction of Fehling solution</li><li>(d) Blue litmus reaction</li></ul>                       |
|     | (d) <i>o</i> - and <i>p</i> -sulphobenzoic acid                                                         |                                                                            | 35.    | Formaldehyde and formic acid can be distinguished using                                                    |
| 24. | Which one is strongest acid                                                                             | [MP PMT 1992]                                                              |        | [AFMC 1993]                                                                                                |
|     | (a) $CH_2FCOOH$ (b) $CH_2FCOOH$                                                                         | H <sub>2</sub> ClCOOH                                                      |        | (a) Tollen's reagent (b) Fehling solution                                                                  |
|     | (c) $CHCl_2COOH$ (d) $CHCl_2COOH$                                                                       | HF <sub>2</sub> COOH                                                       | 36.    | (c) Ferric chloride (d) Sodium bicarbonate<br>Ester and acetamide are distinguished by [ <b>BHU 1996</b> ] |
| 25. | Which does not give silver mirror with amm                                                              |                                                                            |        | (a) Hydrolysis with strong acids or alkali                                                                 |
|     |                                                                                                         | [MP PET 1992]                                                              |        | (b) Derivatives of fatty acids                                                                             |
|     | (a) HCHO (b) Cl                                                                                         | H <sub>3</sub> CHO                                                         |        | (c) Both (a) and (b)                                                                                       |
|     | (c) CH <sub>3</sub> COOH (d) HC                                                                         | СООН                                                                       | 07     | (d) None of these                                                                                          |
| 26  |                                                                                                         |                                                                            | 37.    | Acetic acid exists as a dimer in benzene solution. This is due to<br>[MP PMT 1989; CPMT 1982]              |
| 26. | $2CH_3COOH \xrightarrow{MnO}_{300^{o}C} A$ , product 'A' in                                             | the reaction is                                                            |        | (a) Condensation                                                                                           |
|     |                                                                                                         | [RPMT 2003]                                                                |        | (b) Presence of $-COOH$ group                                                                              |
|     |                                                                                                         | $H_3 - CH_2 - OH$                                                          |        | (c) Presence of $\alpha$ – hydrogen                                                                        |
|     | (c) $CH_3COCH_3$ (d) $CH_3$                                                                             | $H_3 - \underbrace{C}_{\parallel} - O - \underbrace{C}_{\parallel} - CH_3$ |        | (d) Hydrogen bonding                                                                                       |
|     |                                                                                                         |                                                                            | 38.    | Which of the following compounds will react with $\it NaHCO_3$                                             |
| 27. | Acetic acid is weak acid than sulphuric acid                                                            | d because                                                                  |        | solution to give sodium salt and carbon dioxide                                                            |
|     |                                                                                                         | [CPMT 2003]                                                                |        | [CBSE PMT 1999; BHU 1983, 2002]<br>(a) Phenol (b) <i>n</i> -hexanol                                        |
|     | <ul><li>(a) It decompose on increasing temperatu</li><li>(b) It has less degree of ionisation</li></ul> | ure                                                                        |        | (c) Acetic acid (d) Both (a) and (b)                                                                       |
|     | (c) It has – <i>COOH</i> group                                                                          |                                                                            | 39.    | Acetic acid dissolved in benzene shows a molecular mass of                                                 |
|     | (d) None of these                                                                                       |                                                                            |        | [MP PET 1993]                                                                                              |
| 28. | In $CH_3COOH$ and $HCOOH$ , $HCOOH$ w                                                                   | vill be                                                                    |        | (a) 30 (b) 60<br>(c) 120 (d) 240                                                                           |
|     |                                                                                                         | [CPMT 1975; DPMT 1982]                                                     | 40.    | (c) 120 (d) 240<br>The reaction                                                                            |
|     | (a) Less acidic (b) Equ                                                                                 | ually acidic                                                               |        |                                                                                                            |
|     |                                                                                                         |                                                                            |        |                                                                                                            |

Get More Learning Materials Here : 📕



|     | C.I                                                                                       | H_ONa        |                                                                          |
|-----|-------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------|
|     | $2CH_3 - C - OC_2H_5 - \frac{C_2H_5}{C_2}$                                                | 150114       | $\rightarrow$                                                            |
|     | 0                                                                                         |              |                                                                          |
|     | $CH_{3} - \underbrace{C}_{\parallel} - CH_{2} - \underbrace{C}_{\parallel} - OC_{2}H_{2}$ | $H_5 + C_2$  | H <sub>5</sub> OH                                                        |
|     | is called                                                                                 |              | [MP PMT 2003; KCET 1996]                                                 |
|     | <ul><li>(a) Etard reaction</li><li>(c) Claisen condensation</li></ul>                     | (b)<br>(d)   | Perkin's reaction<br>Claisen Schmidt reaction                            |
| 41. | Which is the strongest acid ? ( <i>pl</i>                                                 |              | is given in the bracket)                                                 |
|     | (a) <i>HCOOH</i> (3.77)                                                                   | (b)          | [MP PMT 1997; BHU 2003]<br>$C_6H_5COOH$ (4.22)                           |
|     | (c) $CH_3COOH(4.71)$                                                                      |              |                                                                          |
| 42. | In the presence of iodine catal                                                           |              | rine reacts with acetic acid to                                          |
|     | form<br>O                                                                                 |              | [MP PMT 1997]<br>O                                                       |
|     | (a) $CH_3 - C - Cl$                                                                       | (b)          | $CH_2Cl - C - OH$                                                        |
|     | Cl                                                                                        |              |                                                                          |
|     | (c) $CH_3 - C - OH$                                                                       | (d)          | $O \\ CH_3 - C - O - Cl$                                                 |
|     | (c) $Cl = CH_3 - C - OH = Cl$                                                             |              | 5                                                                        |
| 43. | The acid showing salt-like char                                                           | acter in     |                                                                          |
|     | (a) Acetic acid                                                                           | (b)          | [MP PET/PMT 1998]<br>Benzoic acid                                        |
|     | (c) Formic acid                                                                           | ( )          | lpha – amino acetic acid                                                 |
| 44. | $CH_3COOH \xrightarrow{\Delta} X$ . Ider<br>$P_2O_5$                                      | ntify X      |                                                                          |
|     | 1205                                                                                      |              | [JIPMER 2000; CPMT 2003]                                                 |
|     | (a) $CH_3COCH_3$                                                                          |              | CH <sub>3</sub> CHO                                                      |
| 45. | (c) $(CH_3CO)_2O$<br>Formic acid                                                          | (d)          | CH 4<br>[MP PET/PMT 1988]                                                |
| 43. | (a) Is immiscible with water                                                              |              |                                                                          |
|     | <ul><li>(b) Reduces the ammonical si</li><li>(c) Is a weak acid nearly three</li></ul>    |              | ate<br>half time weaker than acetic                                      |
|     | acid<br>(d) Is prepared by heating po                                                     | tassium      | hydroxide                                                                |
| 46. | Given below are some stateme                                                              |              | cerning formic acid, which of                                            |
|     | them is true<br>(a) It is a weaker acid than a                                            | cetic acid   | [CPMT 1983]<br>]                                                         |
|     | (b) It is a reducing agent                                                                | antad it     | forma a katana                                                           |
|     | <ul><li>(c) When its calcium salt is h</li><li>(d) It is an oxidising agent</li></ul>     | ieated, it   | forms a ketone                                                           |
| 47. | Which decolourises the colour                                                             | of acidic    | KMnO <sub>4</sub>                                                        |
|     | (a) CH <sub>3</sub> COOH                                                                  | ( <b>b</b> ) | [CPMT 1991]<br><i>CH</i> <sub>3</sub> <i>CH</i> <sub>2</sub> <i>COOH</i> |
|     | (c) <i>COOH.COOH</i>                                                                      |              | $CH_3COOC_2H_5$                                                          |
| 48. |                                                                                           | organic      | liquid decomposes sodium                                                 |
|     | carbonate and liberates carbon<br>with Tollen's reagent. The liquid                       |              |                                                                          |
|     | (a) Acetaldehyde                                                                          | (b)          | Acetic acid                                                              |
| 49. | (c) Formaldehyde<br>The end product <i>B</i> in the sequ                                  | ( )          | Formic acid<br>reactions                                                 |
|     | $R - X \xrightarrow{CN^{-}} A \xrightarrow{NaOH}$                                         |              | [CPMT 1985]                                                              |
|     | (a) An alkane                                                                             | , 17 13      | [CLMI 1903]                                                              |
|     | (d) / th analic                                                                           |              |                                                                          |
|     | (b) A carboxylic acid                                                                     | • 1          |                                                                          |
|     |                                                                                           | acid         |                                                                          |

**50.** 
$$CH_3CH_2COOH \xrightarrow{Cl_2/Fe} X \xrightarrow{Alcoholic}_{KO_4} Y$$

|       |     | (4) 011 2 011 0 0 011                                        | (4) 011 3 011 01 0 0 11                                          |
|-------|-----|--------------------------------------------------------------|------------------------------------------------------------------|
|       | 51. | In the precipitation of soap, wh                             | nich can be used instead of NaCl                                 |
|       |     | (a) <i>Na</i>                                                | (b) $CH_3 COONa$                                                 |
| 1996] |     | (c) $Na_2SO_4$                                               | (d) Sodium silicate                                              |
|       | 52. | Which of the following can p<br>causing addiction and moon m | ossibly be used as analgesic without odification                 |
| 2003] |     | C C                                                          | [CBSE PMT 1997]                                                  |
|       |     | (a) Morphine                                                 |                                                                  |
| 8)    |     | (b) <i>N</i> -acetyl-para-aminopheno                         | 1                                                                |
| id to |     | (c) Drazepom                                                 |                                                                  |
|       |     | (d) Tetrahydrocatinol                                        |                                                                  |
|       | 53. | Which of the following es<br>condensation                    | sters cannot undergo Claisen self<br>[CBSE PMT 1998]             |
|       |     | (a) $CH_3 - CH_2 - CH_2 -$                                   | $CH_2 - COOC_2H_5$                                               |
|       |     | (b) $C_6H_5COOC_2H_5$                                        |                                                                  |
|       |     | (c) $C_6H_5CH_2COOC_2H_5$                                    |                                                                  |
|       |     | (d) $C_6 H_{11} C H_2 COOC_2 H_2$                            | 5                                                                |
| 1998] | 54. | When acetic acid is dissolved in                             | n benzene its molecular mass                                     |
|       |     |                                                              | [AFMC 1991]                                                      |
|       |     | (a) Decreases                                                |                                                                  |
|       |     | (b) Increases                                                |                                                                  |
|       |     | (c) Either increases or decrea                               | ses                                                              |
| 2003] |     | (d) Suffers no change                                        |                                                                  |
| 2003] | 55. | Benzoic acid has higher mole<br>water because                | cular weight in benzene and less in                              |
| 1988] |     | (a) Water has lower freezing benzene                         | point and higher boiling point than                              |
| 1900] |     | (b) It dissociates to a greater e                            | extent in benzene than in water                                  |
|       |     | (c) It associates in water and                               |                                                                  |
| cetic |     | (d) It dissociates in water and                              | associates in benzene                                            |
|       | 56. | What is the main reason for<br>undergo ionization            | r the fact that carboxylic acids can<br>[MNR 1993; Pb. PMT 2004] |
| ch of |     | (a) Absence of $\alpha$ – hydrogen                           |                                                                  |
| 1983] |     | (b) Resonance stabilisation of                               |                                                                  |
|       |     | (c) High reactivity of $\alpha$ – hy                         | •                                                                |
|       |     | (d) Hydrogen bonding                                         | 0 -                                                              |
|       |     |                                                              |                                                                  |

Compound Y is

(a)  $CH_3CH_2OH$ 

(c)  $CH_2 = CHCOOH$ 

[DPMT 1981; JIPMER 2000; AIEEE 2002]

(b)  $CH_3CH_2CN$ 

(d)  $CH_3 CHClCOOH$ 

57. Which of the following compounds will evolve hydrogen on treatment with metal [CPMT 1974]

(a) 
$$C_2H_5OH$$
 (b)  $CH_3COOH$ 

- **58.** When urea is heated, it forms biurette, alkaline solution of which forms ..... with  $CuSO_4$  solution [AFMC 1980]
  - (a) Violet colour (b) Red colour
  - (c) Green colour (d) Black colour
- 59. Which of the following would be expected to be most highly ionised in water [A11MS 1982]
  - (a)  $CH_2ClCH_2CH_2COOH$  (b)  $CH_3CHCl.CH_2.COOH$
  - (c)  $CH_3.CH_2.CCl_2.COOH$  (d)  $CH_3.CH_2.CHCl.COOH$

60. Alkaline hydrolysis of esters is known as

- [CPMT 1986, 88, 93; MNR 1986; MP PET 1993]

   (a) Saponification
   (b) Hydration
- (c) Esterification (d) Alkalisation
- 61. Which of the following undergoes hydrolysis when dissolved in water [CPMT 1989]

CLICK HERE



(a) 
$$CH_3COONa$$
 (b)  $CH_3CONH_2$   
(c) Both (a) and (b) (d)  $C_6H_5CH_3$   
62. Name the end product in the following series of reactions  
 $CH_3COOH \xrightarrow{M_3} A \xrightarrow{h_{P,G_3}} B$  [DPMT 1984]  
(a)  $CH_4$  (b)  $CH_3OH$   
(c) Acetonitrile (d) Ammonium acetate  
63. Reduction of carboxylic acids gives  
(a) Alcohol with LiAIH<sub>4</sub>  
(c) Aldehyde with LiAIH<sub>4</sub>  
(d) Alcohol with 2HI(P)  
64. Which of the following substances when boiled with caustic soda  
solution will evolve ammonia [BHU 1983]  
(a) Ethylamine (b) Aniline  
(c) Acetamide (d) Acetoxime  
65.  $CH_2 = CH - (CH_2)_5 COOH \xrightarrow{Provide} Z$   
where Z is [CPMT 1996]  
(a)  $CH_3 - CH - (CH_2)_5 COOH \xrightarrow{Provide} Z$   
where Z is [CPMT 1996]  
(a)  $CH_3 - CH - (CH_2)_5 - CH_2OH$   
(d)  $C_6H_5COOH$   
(e)  $CH_2 = CH - (CH_2)_5 - CH_2OH$   
(f)  $BrCH_2 - (CH_2)_6 COOH$   
(g)  $Ch_3 - CH - (CH_2)_5 - CH_2OH$   
(h) B  $CCH_3 - CH - (CH_2)_5 - CH_2OH$   
(c)  $CH_2 = CH - (CH_2)_5 - CH_2OH$   
(d)  $C_6H_5COOH$   
65.  $HCOOH$  shows all tests of aldehyde because [CPMT 1996]  
(a) It has one aldehyde group  
(b) It is member of aldehyde  
(c) All acids show tests of aldehyde  
(d) Does not show any test  
67. Which one of the following orders of acid strength is correct  
[CBSE PMT 2003]  
(a)  $RCOOH > HC = CH > HOH > ROH$   
(b)  $RCOOH > HOH > ROH > HC = CH$   
(c)  $RCOOH > HOH > ROH > HC = CH$   
(d)  $RCOOH > HOH > ROH > HC = CH$   
(d)  $RCOOH > HOH > ROH > HC = CH$   
(d)  $RCOOH > HOH > HC = CH > ROH$   
68. The order of decreasing rate of reaction with ammonia is  
[Pb. PMT 1998]  
(a) Anhydrides, esters, ethers  
(b) Anhydrides, esters, ethers  
(c) Ethers, anhydrides, esters  
(d) Esters, ethers, anhydrides  
59. Oxidation of toluene with  $CrO_3$  in the presence of  $(CH_3CO)O_2$   
gives a product 'A' which on treatment with aqueous  $NaOH$   
produces  
(CBSE PMT 1995]  
(a)  $C_6H_5COONa$  (d) 2, 4-diacetyl toluene  
70.  $CH_3COOCH_3 + excess PhMgBr$   
 $\rightarrow product  $-\frac{H^*}{O} \times X$   
The product X is [Oriss JEE 2005]$ 

(b) 1, 1-diphenylmethanol (c) Methyl phenylethanol (d) Methyl phenylketone 71. Which of the following is most acidic [MP PMT 1995] (a) Formic acid (b) Chloroacetic acid (c) Propionic acid (d) Acetic acid Urea on slow heating gives 72. (a)  $NH_2CON.HNO_2$ (b)  $NH_2CONHCONH_2$ (d)  $NH_2CONH_2.HNO_3$ (c) HCNO The principal organic product formed in the following reaction is 73.  $CH_2 = CH(CH_2)_8 COOH + HBr \xrightarrow{\text{peroxide}}$ [Pb. PMT 1998] (a)  $CH_3CHBr(CH_2)_8COOH$ (b)  $CH_2 = CH(CH_2)_8 COBr$ (c)  $CH_2BrCH_2(CH_2)_8COOH$ (d)  $CH_2 = CH(CH_2)_7 CHBrCOOH$ Which one of the following compound gives aspirin on reacting with 74. acetic anhydride in presence of  $H_2SO_4$ [EAMCET 2003] (a) *OH* сно Соон An acyl halide is formed when PCl<sub>5</sub> reachs+with an 75. [CBSE PMT 1994; AIIMS 1998; CBSE PMT 2002] (a) Acid (b) Alcohol (c) Amide (d) Ester Which one of the following orders is wrong with respect to the 76. property indicated [CBSE PMT 1994] (a) Formic acid > acetic acid > propanoic acid (acid strength) (b) Fluoroacetic acid > chloroacetic acid > bromoacetic acid (acid strength) Benzoic acid > phenol > cyclohexanol (acid strength) (d) Aniline > cyclohexylamine > benzamide (basic strength) A fruity smell is produced by the reaction of  $C_2H_5OH$  with 77. [AFMC 2000] (b)  $CH_3COCH_3$ (a)  $PCl_5$ (c)  $CH_3COOH$ (d) None of these Which of the following orders of relative strengths of acids is 78. [CPMT 2000] correct (a)  $FCH_2COOH > ClCH_2COOH > BrCH_2COOH$ (b)  $ClCH_2COOH > BrCH_2COOH > FCH_2COOH$ (c)  $BrCH_2COOH > ClCH_2COOH > FCH_2COOH$ (d)  $ClCH_2COOH > FCH_2COOH > BrCH_2COOH$ When acetamide is treated with NaOBr, the product formed is[Haryana CEET **79**. (a)  $CH_3CN$ (b)  $CH_3CH_2NH_2$ (c)  $CH_3NH_2$ (d) None of the above The fatty acid which shows reducing property is 80. [Kerala CET 2000] (a) Acetic acid (b) Ethanoic Acid

Get More Learning Materials Here : 💶

(a) 1, 1-diphenylethanol



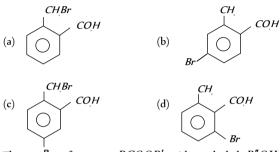
|      | (c) Oxalic acid (d) Formic acid                                                                            | 91.              | Reaction between an acid and alcohol will give                                                                                                  |
|------|------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 81.  | The reagent that can be used to distinguish between methanoic acid                                         | <b>J</b>         | [Roorkee 1995]                                                                                                                                  |
|      | and ethanoic acid is                                                                                       |                  | <ul> <li>(a) Higher C containing acid</li> <li>(b) Secondary alcohol</li> <li>(c) Alkane</li> <li>(d) Ester</li> </ul>                          |
|      | [Kerala CET 2001, 02]<br>(a) Ammoniacal silver nitrate solution                                            | 92.              | Benzoic acid gives benzene on being heated with $X$ and phenol gives                                                                            |
|      | (b) Neutral ferric Chloride solution                                                                       |                  | benzene on being heated with Y. Therefore X and Y are respectively[CBSE PMT                                                                     |
|      | (c) Sodium carbonate solution                                                                              |                  | <ul> <li>(a) Sodalime and copper</li> <li>(b) Zn dust and NaOH</li> <li>(c) Zn dust and sodalime</li> <li>(d) Sodalime and zinc dust</li> </ul> |
| 82.  | (d) Phenolphthalein<br>Hydrolysis of an ester gives acid <i>A</i> and alcohol <i>B</i> .                   | 93.              | The product obtained when acetic acid is treated with phosphorus                                                                                |
| 02.  | A reduces Fehling solution and oxidation of <i>B</i> gives <i>A</i> . The ester is                         |                  | trichloride is [CPMT 1989, 93, 94; RPMT 1997;<br>[MP PMT 1999] AIIMS 1008; EAMCET 1008]                                                         |
|      | (a) Methyl formate (b) Ethyl formate                                                                       |                  | (a) $CH_3COOPCl_3$ (b) $CH_3COOCl$                                                                                                              |
|      | (c) Methyl acetate (d) Ethyl acetate                                                                       |                  |                                                                                                                                                 |
| 83.  | Order of reactivity is [RPMT 2003]                                                                         |                  |                                                                                                                                                 |
|      |                                                                                                            | 94.              | Acetyl chloride is reduced with $LiAlH_4$ the product formed is                                                                                 |
|      | (a) $R - C - X > RCONH_2 > RCOOCOR > RCOOR$                                                                |                  | (a) Methyl alcohol(b) Ethyl alcohol(c) Acetaldehyde(d) Acetone                                                                                  |
|      | (b) $RCOX > RCOOCOR > RCOOR > RCONH_2$                                                                     | 95.              | In the preparation of an ester, the commonly used dehydrating agent                                                                             |
|      | (c) $RCOOR > RCONH_2 > RCOX > RCOOCOR$                                                                     |                  | is <b>[KCET 1992]</b><br>(a) Phosphorus pentaxide                                                                                               |
|      | (d) $RCOOCOR > RCOOR > RCOX > RCONH_2$                                                                     |                  | (b) Anhydrous calcium carbide                                                                                                                   |
| 84.  | Right order of acidic strength is [RPMT 2003]                                                              |                  | (c) Anhydrous aluminium chloride                                                                                                                |
| • 1. | (a) $CH_2ClCOOH > HCOOH >$                                                                                 | 96.              | (d) Concentrated sulphuric acid<br>In the esterification reaction of alcohols[ <b>KCET 1984</b> ]                                               |
|      | $C_2H_5COOH > CH_3COOH$                                                                                    | 50.              | (a) $OH^-$ is replaced by $C_6H_5OH$                                                                                                            |
|      | (b) $CH_2ClCOOH > HCOOH >$                                                                                 |                  |                                                                                                                                                 |
|      | $CH_3COOH > C_2H_5COOH$                                                                                    |                  | (b) $H^+$ is replaced by sodium metal                                                                                                           |
|      | (c) $C_2H_5COOH > CH_3COOH >$                                                                              |                  | (c) $OH^-$ is replaced by chlorine                                                                                                              |
|      | $HCOOH > CH_2CICOOH$                                                                                       |                  | (d) $OH^-$ is replaced by $CH_3COO^-$ group                                                                                                     |
|      | _                                                                                                          | 97.              | Lower carboxylic acids are soluble in water due to [MP PET 1999]                                                                                |
|      | (d) $HCOOH > CH_2ClCOOH >$                                                                                 |                  | (a) Low molecular weight (b) Hydrogen bonding                                                                                                   |
| 0-   | $CH_{3}COOH > C_{2}H_{5}COOH$                                                                              |                  | (c) Dissociation into ions (d) Easy hydrolysis                                                                                                  |
| 85.  | Saponification of ethyl benzoate with caustic soda as alkali gives<br>(a) Benzyl alcohol and ethanoic acid | 98. <sup>[</sup> | Kerala (Med.) 2001 $P_2O_5$ (phosphorus pentaoxide) to give                                                                                     |
|      | (b) Sodium benzoate and ethanol                                                                            |                  | (a) Methyl cyanide(b) Methyl cyanate(c) Ethyl cyanide(d) Ethyl isocyanate                                                                       |
|      | <ul><li>(c) Benzoic acid and sodium ethoxide</li><li>(d) Phenol and ethanoic acid</li></ul>                | 99.              | The reaction                                                                                                                                    |
|      | (e) Sodium benzoxide and ethanoic acid                                                                     |                  | $CH_3COOH + Cl_2 \xrightarrow{P} ClCH_2COOH + HCl$ is called                                                                                    |
| 86.  | Lactic acid on oxidation by alkaline potassium permanganate gives [Tami                                    | l Nadu C         | CET 2002] [NSE 2001; MP PET 2003]                                                                                                               |
|      | (a) Tartaric acid(b) Pyruvic acid(c) Cinnamic acid(d) Propionic acid                                       |                  | (a) Hell-Volhard-Zelinsky reaction                                                                                                              |
| 87.  | $RCOOH \longrightarrow RCH_2OH$                                                                            |                  | <ul><li>(b) Birch reaction</li><li>(c) Rosenmund reaction</li></ul>                                                                             |
|      | This mode of reduction of an acid to alcohol can be affected only by                                       |                  | (d) H <b>ự GBS &amp; PMT 1989</b> jion                                                                                                          |
|      | (a) $Zn/HCl$                                                                                               | 100.             | An aqueous solution of urea [CPMT 1983]                                                                                                         |
|      | (b) Na-alcohol                                                                                             |                  | (a) Is neutral<br>(b) Is acidic                                                                                                                 |
|      | <ul> <li>(c) Aluminium isopropoxide and isopropyl alcohol</li> <li>(d) LiAlH<sub>4</sub></li> </ul>        |                  | (c) Is basic                                                                                                                                    |
| 88.  | Which one of the following compounds forms a red coloured                                                  |                  | (d) Can act as an acid and a base                                                                                                               |
| _ /  | solution on treatment with neutral $FeCl_3$ solution                                                       | 101.             | Nitration of benzoic acid gives[MP PMT 1997](a) 3-nitrobenzoic acid(b) 2-nitrobenzoic acid                                                      |
|      | [EAMCET 2003]                                                                                              |                  | (c) 2, 3-dinitrobenzoic acid (d) 2, 4-dinitrobenzoic acid                                                                                       |
|      | (a) $CH_3COCH_3$ (b) $CH_3OCH_3$                                                                           | 102.             | The reagent used for converting ethanoic acid to ethanol is                                                                                     |
|      | (c) $CH_3CH_2OH$ (d) $CH_3COOH$                                                                            |                  | [KCET 1996; EAMCET 1998]                                                                                                                        |
| 89.  | Urea can be tested by [UPSEAT 1999; BVP 2003]                                                              |                  | (a) $LiAlH_4$ (b) $KMnO_4$                                                                                                                      |
|      | (a) Benedict test(b) Mullicken test(c) Ninhydrin(d) Biuret test                                            |                  | (c) $PCl_3$ (d) $K_2Cr_2O_7 / H^+$                                                                                                              |
| 90.  | What are the organic products formed in the following reaction                                             | 103.             | Which one of the following has the maximum acid strength [NCERT 1983]                                                                           |
|      | $C_6H_5 - COO - CH_3 \xrightarrow{1.LiAIH_4} $ [IIT 1995]                                                  |                  | (a) <i>o</i> -nitrobenzoic acid (b) <i>m</i> -nitrobenzoic acid                                                                                 |
|      | (a) $C_6H_5 - COOH$ and $CH_4$                                                                             |                  | (c) <i>p</i> -nitrobenzoic acid (d) <i>p</i> -nitrophenol                                                                                       |
|      | (b) $C_6H_5 - CH_2 - OH$ and $CH_4$                                                                        | 104.             | When benzoic acid is treated with $PCl_5$ at 100° <i>C</i> , it gives                                                                           |
|      | (b) $C_6H_5 - CH_2$ of $A$ and $CH_4$<br>(c) $C_6H_5 - CH_3$ and $CH_3 - OH$                               |                  | [ <b>Orissa JEE 2003</b> ]<br>(a) Benzoyl chloride (b) <i>o</i> -chlorobenzoic acid                                                             |
|      | (d) $C_6H_5 - CH_2 - OH$ and $CH_3 - OH$                                                                   |                  | (c) <i>p</i> -chlorobenzoic acid (d) Benzyl chloride                                                                                            |
|      | (0) = 6.1.5 = 0.1.2 = 0.11  and  0.1.3 = 0.11                                                              |                  |                                                                                                                                                 |
|      |                                                                                                            |                  |                                                                                                                                                 |

Get More Learning Materials Here : 📕

r www.studentbro.in

| 105. | Oxalic acid on being heated upto $90^{o}C$ with conc. $H_2SO_4$ forms                                  |
|------|--------------------------------------------------------------------------------------------------------|
|      | [AFMC 1989; MP PET 1994; MP PMT 1989]                                                                  |
|      | (a) $HCOOH + CO_2$ (b) $CO_2 + H_2O$                                                                   |
|      | (c) $CO_2 + CO + H_2O$ (d) $HCOOH + CO$                                                                |
| 106. | Benzoic acid is less acidic than salicylic acid because of<br>[Bihar MEE 1997]                         |
|      | (a) Hydrogen bond (b) Inductive effect                                                                 |
|      | (c) Resonance (d) All of these<br>(e) None of these                                                    |
| 107. | (e) None of these<br>Lactic acid on heating with conc. $H_2SO_4$ gives                                 |
| 107. | [MP PET 1996]                                                                                          |
|      | (a) Acetic acid (b) Propionic acid                                                                     |
| _    | (c) Acrylic acid (d) Formic acid                                                                       |
| 108. | Acetamide is         [MP PET 1990; RPMT 1999]           (a)         Acidic         (b)         Basic   |
|      | (c) Neutral (d) Amphoteric                                                                             |
| 109. | Silver benzoate reacts with bromine to form [KCET 1996]                                                |
|      | С                                                                                                      |
|      | C – OBr                                                                                                |
|      | (a) (b)                                                                                                |
|      |                                                                                                        |
|      | COOAg                                                                                                  |
|      |                                                                                                        |
|      |                                                                                                        |
|      |                                                                                                        |
| 110. | Acetic an Baydride reacts with diethyl ether in presence of anhydrous                                  |
|      | AlCl <sub>3</sub> to form         [MP PMT 1992]                                                        |
|      | (a) Ethyl acetate(b) Methyl propionate(c) Methyl acetate(d) Propionic acid                             |
| 111. | Treatment of benzoic acid with $Cl_2 / FeCl_3$ will give                                               |
|      | [KCET 1998; CET Pune 1998]                                                                             |
|      | (a) <i>p</i> -chlorobenzoic acid (b) <i>o</i> -chlorobenzoic acid                                      |
|      | (c) 2, 4-dichlorobenzoic acid (d) <i>m</i> -chlorobenzoic aicd                                         |
| 112. | Hinsberg's reagent is [MP PMT 2003]                                                                    |
|      | (a) $\langle -CONH_2 \rangle$ (b) $\langle -SO_2Cl \rangle$                                            |
|      | (c) $CH_3 \rightarrow COCl$ (d) $\swarrow COCl$                                                        |
| 113. | Which of the following is the correct order of increasing strengths of                                 |
|      | carboxylic acids                                                                                       |
|      | (a) $CH_2FCOOH < CH_3COOH$                                                                             |
|      | $< CH_2 ClCOOH < CCl_3 COOH$                                                                           |
|      | (b) $CH_3COOH < CH_2ClCOOH$                                                                            |
|      | < CH <sub>2</sub> FCOOH < CCl <sub>3</sub> COOH                                                        |
|      | (c) $CH_2ClCOOH < CH_2FCOOH$                                                                           |
|      | $< CCl_3 COOH < CH_3 COOH$                                                                             |
|      | (d) $CCl_3COOH < CH_2ClCOOH$                                                                           |
|      | $< CH_2FCOOH < CH_3COOH$                                                                               |
| 114. | The weakest acid among the following is<br>[CPMT 1976, 82, 89; BHU 1982; CBSE PMT 1991;                |
|      | (a) CH <sub>3</sub> COOH (b) Cl <sub>2</sub> CHCOOH                                                    |
|      |                                                                                                        |
| 115  | (c) $ClCH_2COOH$ (d) $Cl_3CCOOH$<br>Consider the acidity of the carboxylic acids                       |
| 115. | (a) $PhCOOH$ (b) $o - NO_2C_6H_4COOH$                                                                  |
|      | (a) $p = NO_2C_6H_4COOH$ (b) $m = NO_2C_6H_4COOH$<br>(c) $p = NO_2C_6H_4COOH$ (d) $m = NO_2C_6H_4COOH$ |
|      | (1) P 10206140001 (1) m 10020611400011                                                                 |

| Whi | ch of the following order | is correct?         | [AIEEE 2004] |
|-----|---------------------------|---------------------|--------------|
| (a) | b > d > a > c             | (b) $b > d > c > d$ | a            |
| (c) | a > b > c > d             | (d) $b > c > d > c$ | a            |
| On  | 0 ,                       | with aqueous sodium |              |


composition of the resultant solution is [AIEEE 2004] (a)  $CH_3COCl + C_2H_5OH + NaOH$ 

(b)  $CH_3COONa + C_2H_5OH$ 

116.

- (c)  $CH_3COOC_2H_5 + NaCl$
- (d)  $CH_3Cl + C_2H_5COONa$

**117.** *o*-Toluic acid on reaction with  $Br_2 + Fe$ , gives [AllMS 2004]



- 118.
   The reaction of an ester RCOOR' with an alcohol R"OH in the presence of an acid gives
   [Kerala PMT 2004]
  - (a) *RCOOH* (b) *R'COOH* 
    - (c) R''COOR (d) RCOOR''

(e) 
$$R'COOR''$$

- 119. RCOOH on treatment with PCl<sub>5</sub> and KCN, is subjected to hydrolysis followed by Clemmensen's reduction, the product obtained is [Kerala PMT 2004]
  - (a)  $RCH_2 COCl$  (b)  $RCH_2 COOH$
  - (c) RCOCN (d) RCN
  - (e) R OH
- 120. The reagent which does not give acid chloride on treating with a carboxylic acid is [KCET 2004]
  - (a)  $PCl_5$  (b)  $Cl_2$
  - (c)  $SOCl_2$  (d)  $PCl_3$
- 121. An organic compound is boiled with alcoholic potash. The product is cooled and acidified with *HCl*. A white solid separates out. The starting compound may be [KCET 2004]
  - (a) Ethyl benzoate (b) Ethyl formate
  - (c) Ethyl acetate (d) Methyl acetate
- **122.** The *OH* group of an alcohol or the -COOH group of a carboxylic acid can be replaced by -Cl using
  - [CBSE PMT 2004]

(a) Chlorine(b) Hydrochloric acid

(c) Glucose


- (c) Phosphorus pentachloride
- (d) Hypochlorous acid
- 123.
   Which of the following is most acidic
   [MP PET 2004]

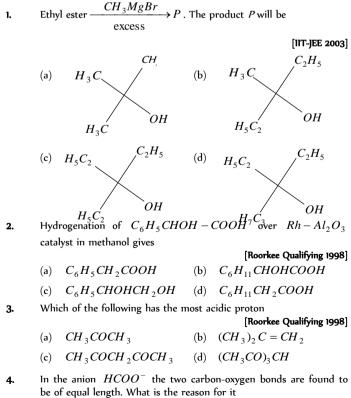
   (a)
   Picric acid
   (b)
   *p*-nitrophenol
  - (c) m-nitrophenol (d) o-p-nitrophenol
  - Benedict's solution is not reduced by [CPMT 2004]
  - (a) Formaldehyde (b) Acetaldehyde
    - (d) Acetic anhydride
- **125.**  $CH_3COOH$  is reacted with  $CH \equiv CH$  in presence of  $Hg^{++}$ , the product is [DPMT 2004; BHU 1998]
  - (a)  $CH_3(OOCCH_3)$  (b)  $CH_3$  $CH_2(OOCH_3)$  (b)  $CH_3$  $CH_2-(OOC-CH_3)$

Get More Learning Materials Here : 📕

CLICK HERE ( >>

124.




|      | (c) $CH_3$ (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | None of these                                         |                  | Ι                                                                        | ł                                                                             |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|      | $(\mathbf{C})  CH_3 \qquad (\mathbf{C}) \\ \downarrow \\ CH(OOC-CH_3)_2 \qquad (\mathbf{C})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | None of these                                         |                  | 1                                                                        | 1                                                                             |
| 126. | Acetic acid reacts with $PCl_5$ to form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [Ph. CET 2001]                                        | 135.             | $C_6H_5CHO + HCN \rightarrow C_6H_5 - C_6H_5$                            | C - CN                                                                        |
|      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHCl <sub>2</sub> COOH                                |                  |                                                                          |                                                                               |
|      | <b>,</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH <sub>3</sub> COOCl                                 |                  | 0                                                                        | 0H                                                                            |
| 107  | $CH_3COOC_2H_5$ with excess of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                     |                  | The product would be                                                     | [Pb. PMT 1998]                                                                |
| 127. | gives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [MH CET 2004]                                         |                  | <ul><li>(a) A racemate</li><li>(b) Optically active</li></ul>            |                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_2H_5$                                              |                  | (c) A meso compound                                                      |                                                                               |
|      | (a) $CH_3 - C = O$ (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $CH_3 - C - OH$                                       | 136.             | (d) A mixture of diastereomers<br>What happens when 2-hydroxy bei        | nzoic acid is distilled with zinc                                             |
|      | (a) $CH_3 - C = O$ (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                  | dust, it gives                                                           | [MP PET/PMT 1998]                                                             |
|      | $C_2H_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C_2H_5$                                              |                  |                                                                          | ) Benzoic acid<br>) A polymeric compound                                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_2H_5$                                              | 137.             | $CH_3CO_2C_2H_5$ on reaction with s                                      |                                                                               |
|      | (c) $CH_3 - C = O$ (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $CH_3 - C = O$                                        |                  | A, which on heating in the presence                                      | of acid gives <i>B</i> compound <i>B</i> is [AllMS 2005                       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\overset{ }{CH}_{3}$                                 |                  | (a) $CH_3COCH_2COOH$ (b                                                  | ) $CH_3COCH_3$                                                                |
| 128. | Urea upon hydrolysis yields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [Pb. CET 2001]                                        |                  | (c) $CH_2 \longrightarrow O$ (d)                                         | ) $CH_2 = C < \frac{OC_2H_5}{C_2H_5}$                                         |
|      | (a) Acetamide (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Carbonic acid                                         |                  | $CH_2 = 0$                                                               | $OC_2H_5$                                                                     |
|      | (c) Ammonium hydroxide (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NO <sub>2</sub>                                       | 138.             | $C_6H_5CONHCH_3$ can be converted                                        | d into $C_6H_5CH_2NHCH_3$ by[AllMS 200                                        |
| 129. | $CH_{3}CHO \xrightarrow{HCN} A \xrightarrow{HOH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\rightarrow B$ The product B is                      |                  | (a) $NaBH_4$ (b                                                          | ) $H_2 - Pd/C$                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [Pb. CET 2003]                                        |                  | (c) $LiAlH_4$ (d                                                         | ) $Zn - Hg / HCl$                                                             |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glycolic acid                                         | 139.             | Among the following acids which ha                                       | s the lowest $pKa$ value                                                      |
| 120  | (c) Lactic acid (d)<br>What is the % of acetic acid present i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Malic acid                                            |                  |                                                                          | [AIEEE 2005]                                                                  |
| 130. | _ ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04; MH CET 2003; CPMT 1974, 75]                       |                  |                                                                          | ) HCOOH                                                                       |
|      | (a) $6 - 10\%$ (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70 - 80%                                              | 140.             | (c) $(CH_3)_2CH - COOH$ (d<br>X is heated with soda lime and gives       | 5 2                                                                           |
|      | (c) $7 - 8\%$ (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90-100%                                               | 140.             | -                                                                        | [AFMC 2005]                                                                   |
| 131. | Fruity smell is given by<br>(a) Esters (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [MH CET 2004]<br>Alcohols                             |                  |                                                                          | ) Methanoic acid<br>) Either (a) or (c)                                       |
|      | (c) Chloroform (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | 141.             | Which of the following is an amphot                                      | eric acid [KCET 2005]                                                         |
| 132. | Lactic acid molecule has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [MH CET 2004]                                         |                  |                                                                          | ) Salicylic acid<br>) Citric acid                                             |
|      | <ul><li>(a) One chiral carbon atom</li><li>(b) Two chiral carbon atoms</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       | 142.             | Colouration of $Br_2 / CCl_4$ will be                                    |                                                                               |
|      | (c) No chiral carbon atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                  |                                                                          | [Orissa JEE 2005]                                                             |
|      | (d) As asymetric molecule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                  | (a) Cinnamic acid (b<br>(c), <u>o-ph</u> thalic acid (d                  |                                                                               |
| 133. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | EE (Scre<br>143. | Order of hydrolysis for the following                                    |                                                                               |
|      | CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COONa<br>L                                            |                  |                                                                          | ) RCOOR                                                                       |
|      | (a) ; <i>CHCOOH</i> (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ; 50                                                  |                  | (111) $RCONH_2$ (1V<br>(a) $1>1V>11>111$ (b)                             | /) ( <i>RCO</i> ) <sub>2</sub> <i>O</i> [ <b>DPMT 2005</b> ]<br>) 1>11>111>11 |
|      | , chicochi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                  | (c) 1>111>11>1V (d                                                       | ) 1V>111>11>1                                                                 |
|      | SONa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CH                                                    | 144.             |                                                                          | ponyl group of ester, we get [DPMT 2005]                                      |
|      | 50,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>SO-О-СОСН</i>                                      |                  |                                                                          | ) $\alpha, \beta$ -unsaturated ester                                          |
|      | (c) (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                  | (c) $\beta$ -keto aldehyde (d                                            |                                                                               |
|      | , 30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ; NaOH                                                | 145.             | Which of the following compound<br>solution to give sodium salt and cart | -                                                                             |
|      | Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CH.                                                   |                  | (a) Acetic acid (b)                                                      |                                                                               |
| 134. | In a set reactions acid<br>$CH_{1}COOH_{2} = A_{2}^{Benzene}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | yielded a product $D$                                 |                  |                                                                          | ) Both (a) and (c)                                                            |
|      | $CH_{3}COOH \xrightarrow{SOCl_{2}} A \xrightarrow{Benzene} Anhr. AlCl_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\rightarrow D \longrightarrow U \longrightarrow D$ . | 146.             | A carboxylic acid is converted into it                                   | s anhydride using<br>[] & K 2005]                                             |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [CBSE PMT 2005]                                       |                  | (a) Thionyl chloride (b                                                  | ) Sulphur chloride                                                            |
|      | OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | СООН                                                  |                  | (c) Sulphuric acid (d                                                    | ) Phosphorus pentoxide                                                        |
|      | (a) $C - COOH$ (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $CH_2 - CH_3$                                         | Us               | es of Carboxylic Acids a                                                 | nd Their Derivatives                                                          |
|      | $(d) \qquad (d) $ | $\left[ \bigcirc \right] \qquad {OH}$                 |                  |                                                                          |                                                                               |
|      | ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | 1.               | The following compound is used as                                        |                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                  |                                                                          |                                                                               |
|      | (c) $CH_2 - C - CH_3$ (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $C - CH_3$                                            |                  | $OC-CH_3$                                                                | [KCET 1996]                                                                   |
|      | CN CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ОН                                                    |                  |                                                                          |                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~                                                     |                  | ≫``ОН                                                                    |                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                  |                                                                          |                                                                               |

Get More Learning Materials Here : 📕

CLICK HERE

# r www.studentbro.in

| Hypnotic<br>Antiseptic<br>nich of the following grou<br>Esters<br>Amines<br>Galts of organic higher fat<br>Aldehydes<br>n is an acetylation produ<br>2-hydroxybenzoic acid | tty acids                              | [NCERT 1979; RPET 2000]                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------|
| nich of the following grou<br>Esters<br>Amines<br>Galts of organic higher fat<br>Aldehydes<br>n is an acetylation produ                                                    | tty acids                              | [NCERT 1979; RPET 2000]                          |
| Esters<br>Amines<br>Galts of organic higher fat<br>Aldehydes<br>In is an acetylation produ                                                                                 | tty acids                              | [NCERT 1979; RPET 2000]                          |
| Amines<br>Galts of organic higher fat<br>Aldehydes<br>n is an acetylation produ                                                                                            | ct of                                  |                                                  |
| Galts of organic higher fat<br>Aldehydes<br>n is an acetylation produ                                                                                                      | ct of                                  |                                                  |
| Aldehydes<br>n is an acetylation produ                                                                                                                                     | ct of                                  |                                                  |
| n is an acetylation produ                                                                                                                                                  |                                        | [CBSE PMT 1998]                                  |
|                                                                                                                                                                            |                                        | [CBSE PMT 1998]                                  |
| p-hydroxybenzoic acid                                                                                                                                                      |                                        |                                                  |
|                                                                                                                                                                            | (b)                                    | <i>o</i> -dihydroxybenzene                       |
| <i>m</i> -hydroxybenzoic acid                                                                                                                                              | (d)                                    | <i>p</i> -dihydroxybenzene                       |
| n one is used as a food pr                                                                                                                                                 | reservat                               | ive                                              |
|                                                                                                                                                                            |                                        | [MP PET 1989; KCET 1999]                         |
| Sodium acetate                                                                                                                                                             | (b)                                    | Sodium propionate                                |
| Sodium benzoate                                                                                                                                                            | (d)                                    | Sodium oxalate                                   |
| makes a lemon sour                                                                                                                                                         |                                        |                                                  |
|                                                                                                                                                                            | [CPMT                                  | 1972; CBSE PMT 1991; RPET 1999]                  |
| Fartaric acid                                                                                                                                                              | (b)                                    | Oxalic acid                                      |
| Citric acid                                                                                                                                                                | (d)                                    | Hydrochloric acid                                |
| eagent used for protectio<br>line is                                                                                                                                       | n of am                                | nino group during the nitration<br>[JIPMER 1997] |
| SOCl <sub>2</sub> / Pyridine                                                                                                                                               | (b)                                    | PCl <sub>5</sub>                                 |
| Acetic acid                                                                                                                                                                | (d)                                    | Acetic anhydride                                 |
| 1                                                                                                                                                                          | ine is<br>SOCl <sub>2</sub> / Pyridine | SOCl <sub>2</sub> / Pyridine (b)                 |



(a) Electronic orbitals of carbon atom are hybridised

(b) The C = O bond is weaker than the C - O bond (c) The anion  $HCOO^-$  has two resonating structures The anion is obtained by removal of a proton form the acid (d) molecule An organic compound of molecular formula  $C_4 H_{10}O$  does not 5. react with sodium. With excess of HI, it gives only one type of alkyl halide. The compound is [SCRA 2001] (a) Ethoxyethane (b) 2-Methoxypropane (d) 1-Butanol (c) 1-Methoxypropane When  $CH_2 = CH - COOH$ is reduced with  $LiAlH_4$ , the 6. compound obtained will be [AIEEE 2003] (a)  $CH_3 - CH_2 - COOH$ (b)  $CH_2 = CH - CH_2OH$ (c)  $CH_3 - CH_2 - CH_2OH$ (d)  $CH_3 - CH_2 - CHO$ In a set of the given reactions, acetic acid yielded a product C7.  $CH_3COOH + PCl_5 \rightarrow A \xrightarrow[anh.AlCl_3]{C_6H_6} B \xrightarrow[ether]{C_2H_5MgBr} C.$ Product C would be [CBSE PMT 2003]  $C_2H_5$ (a)  $CH_3 - C(OH)C_6H_5$ (b)  $CH_3CH(OH)C_2H_5$ (c)  $CH_3COC_6H_5$ (d)  $CH_3CH(OH)C_6H_5$ 8. Carboxylic acids are more acidic than phenol and alcohol because of (a) Intermolecular hydrogen bonding (b) Formation of dimers (c) Highly acidic hydrogen (d) Resonance stabilization of their conjugate base  $R - CH_2 - CH_2OH$ 9. can be converted into  $RCH\,_2CH\,_2COOH.$  The correct sequence of the reagents is [AIIMS 1997]  $PBr_3, KCN, H_3O^+$ (a) (b)  $PBr_3, KCN, H_2$  $KCN, H^+$ (c)  $HCN, PBr_3, H^+$ (d) When propionic acid is treated with aqueous sodium bicarbonate 10.  $CO_2\,$  is liberated. The 'C' of  $\,CO_2\,$  comes from [IIT-JEE (Screening) 1999] (b) Carboxylic acid group (a) Methyl group (d) Bicarbonate (c) Methylene group Benzoyl chloride is prepared from benzoic acid by 11. [IIT-JEE (Screening) 2000] (a)  $Cl_2$ , hv(b)  $SO_2Cl_2$ (c)  $SOCl_2$ (d)  $Cl_2, H_2O$ Identify the correct order of boiling points of the following 12. compounds  $CH_3CH_2CH_2CH_2OH$ ,  $CH_3CH_2CH_2CHO$ , (1) (2) $CH_3CH_2CH_2COOH$ [IIT-JEE (Screening) 2002] (3) (a) 1 > 2 > 3(b) 3 > 1 > 2(c) 1 > 3 > 2(d) 3 > 2 > 1The compound not soluble in acetic acid is 13. [UPSEAT 2003; IIT-JEE 1986] (a)  $CaCO_3$ (b) CaO (c)  $CaC_2O_4$ (d)  $Ca(OH)_2$ The ortho/para directing group among the following is 14. [AIIMS 2003] (a) COOH (b) CN(c)  $COCH_3$ (d) NHCOCH 3

 (c)
 COCH 3
 (d)
 MACOCH 3

 15.
 Iodoform test is not given by (a)
 [BHU 1995]

 (a)
 Acetone (c)
 (b)
 Ethyl alcohol (d)

 (c)
 Acetic acid
 (d)

🕀 www.studentbro.in

**CLICK HERE** 

Get More Learning Materials Here : 📕

| 16. | How will you convert butan-2-o                            | one to propanoic acid<br>[ <b>11T-IEE (Screening) 2005</b> ] |
|-----|-----------------------------------------------------------|--------------------------------------------------------------|
|     | (a) Tollen's reagent                                      | (b) Fehling's solution                                       |
|     | (c) $NaOH/I_2/H^+$                                        | (d) $NaOH/NaI/H^+$                                           |
| 17. | Which of the acids cannot be p                            | . , , ,                                                      |
|     | <ul><li>(a) Acetic acid</li><li>(c) Formic acid</li></ul> | [MH CET 2004]<br>(b) Succinic acid<br>(d) All of these       |

R Assertion & Reason

For AIIMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.

| . , |           |   |                                                                                                    |
|-----|-----------|---|----------------------------------------------------------------------------------------------------|
| 1.  | Assertion | : | Carboxylic acid exist as dimer.                                                                    |
|     | Reason    | : | Carboxylic acid shows hydrogen bonding.                                                            |
| 2.  | Assertion | : | Trichloroacetic acid is stronger than acetic acid.                                                 |
|     | Reason    | : | Electron withdrawing substituents decrease the activity.                                           |
| 3.  | Assertion | : | First four aliphatic monocarboxylic acids are colourless.                                          |
|     | Reason    | : | Carboxylic acids with more than five carbon atoms are insoluble in water.                          |
| 4.  | Assertion | : | Carboxylic acids do not give characteristic reactions of carbonyl group.                           |
|     | Reason    | : | Carboxylic acids exist as cyclic dimers in solid, liquid and even in vapour state.                 |
| 5.  | Assertion | : | Pure acetic acid is converted into ice like solid called glacial acetic acid.                      |
|     | Reason    | : | Acetic acid is stronger than <i>HCOOH</i> .                                                        |
| 6.  | Assertion | : | The second dissociation constant of maleic acid is greater than fumaric acid.                      |
|     | Reason    | : | Higher the dissociation constant of acid more is acidic character.                                 |
| 7.  | Assertion | : | Lower acids on reacting with strong electropositive metals give effervescences of $H_2$ .          |
|     | Reason    | : | $MeCOOC_4H_9$ hydrolyses rapidly than $MaCOOCH$                                                    |
| _   |           |   | MeCOOCH <sub>3</sub> .                                                                             |
| 8.  | Assertion | : | Melting point of carboxylic acids shows a regular pattern.                                         |
|     | Reason    | : | Carboxylic acids are reduced to alkanes on reduction with <i>HI</i> in presence of red phosphorus. |
| 9.  | Assertion | : | Electron withdrawing groups decrease the acidity of carboxylic acids.                              |
|     | Reason    | : | Substituents affect the stability of the conjugate base and acidity of carboxylic acids.           |
| 10. | Assertion | : | Fluoroacetic acid is stronger acid than bromoacetic acid.                                          |
|     | Reason    | : | Acidity depends upon the electron withdrawing effects of the fluorine and chlorine.                |
| 11. | Assertion | : | Aminoacetic acid is less acidic than acetic acid.                                                  |
|     | Reason    | : | Amino group is electron donating in nature.                                                        |
|     |           |   |                                                                                                    |

| 12. | Assertion | : | Carboxylic acids have higher boiling points than alkanes.                |
|-----|-----------|---|--------------------------------------------------------------------------|
|     | Reason    | : | Carboxylic acids are resonance hybrids.                                  |
| 13. | Assertion | : | Both formic acid and oxalic acid decolourize $KMnO_4$ solution.          |
|     | Reason    | : | Both are easily oxidised to $CO_2$ and $H_2O$ .                          |
| 14. | Assertion | : | Esters which contatin $\alpha$ – hydrogens undergo Claisen condensation. |
|     | Reason    | : | $LiAlH_4$ reduction of esters gives acids.                               |



### General Introduction of Carboxylic Acids and Their Derivatives

| 1  | d | 2  | d | 3  | c | 4  | d | 5  | а   |
|----|---|----|---|----|---|----|---|----|-----|
| 6  | C | 7  | d | 8  | C | 9  | C | 10 | d   |
| 11 | а | 12 | C | 13 | d | 14 | d | 15 | b   |
| 16 | C | 17 | d | 18 | d | 19 | C | 20 | b,d |
| 21 | a | 22 | a | 23 | c | 24 | b | 25 | b   |
| 26 | b | 27 | C | 28 | d | 29 | а | 30 | a   |
| 31 | c | 32 | b | 33 | d | 34 | c | 35 | a   |
| 36 | d | 37 | a | 38 | d |    |   |    |     |

### Preparation of Carboxylic Acids and Their Derivatives

| 1  | d | 2  | а | 3  | а | 4  | С | 5  | c |
|----|---|----|---|----|---|----|---|----|---|
| 6  | а | 7  | а | 8  | c | 9  | а | 10 | b |
| 11 | d | 12 | а | 13 | b | 14 | d | 15 | a |
| 16 | c | 17 | c | 18 | а | 19 | c | 20 | b |
| 21 | а | 22 | b | 23 | b | 24 | а | 25 | c |
| 26 | d | 27 | с | 28 | b | 29 | а | 30 | b |
| 31 | С | 32 | а | 33 | b | 34 | С | 35 | a |
| 36 | b | 37 | b | 38 | c | 39 | b | 40 | a |
| 41 | d | 42 | b | 43 | b | 44 | а | 45 | b |
| 46 | d | 47 | С | 48 | а | 49 | а |    |   |

# Properties of Carboxylic Acids and Their Derivatives

| 1  | c | 2  | b  | 3  | d | 4  | b | 5  | d |
|----|---|----|----|----|---|----|---|----|---|
| 6  | b | 7  | ad | 8  | b | 9  | а | 10 | а |
| 11 | а | 12 | d  | 13 | b | 14 | b | 15 | d |
| 16 | b | 17 | C  | 18 | a | 19 | d | 20 | d |

Get More Learning Materials Here :



| 21  | b | 22  | b | 23  | b | 24  | d | 25  | C |
|-----|---|-----|---|-----|---|-----|---|-----|---|
| 26  | С | 27  | b | 28  | C | 29  | C | 30  | C |
| 31  | b | 32  | c | 33  | d | 34  | c | 35  | d |
| 36  | c | 37  | d | 38  | c | 39  | c | 40  | с |
| 41  | а | 42  | b | 43  | d | 44  | c | 45  | b |
| 46  | b | 47  | c | 48  | d | 49  | c | 50  | с |
| 51  | c | 52  | b | 53  | b | 54  | b | 55  | d |
| 56  | b | 57  | c | 58  | a | 59  | c | 60  | a |
| 61  | С | 62  | с | 63  | b | 64  | c | 65  | b |
| 66  | а | 67  | С | 68  | b | 69  | c | 70  | a |
| 71  | b | 72  | b | 73  | с | 74  | b | 75  | а |
| 76  | d | 77  | C | 78  | a | 79  | С | 80  | d |
| 81  | а | 82  | а | 83  | b | 84  | b | 85  | b |
| 86  | b | 87  | d | 88  | d | 89  | d | 90  | d |
| 91  | d | 92  | d | 93  | с | 94  | b | 95  | d |
| 96  | d | 97  | b | 98  | a | 99  | а | 100 | а |
| 101 | а | 102 | а | 103 | a | 104 | а | 105 | с |
| 106 | а | 107 | С | 108 | d | 109 | d | 110 | a |
| 111 | d | 112 | b | 113 | b | 114 | a | 115 | d |
| 116 | С | 117 | С | 118 | d | 119 | b | 120 | b |
| 121 | а | 122 | С | 123 | а | 124 | d | 125 | C |
| 126 | а | 127 | b | 128 | b | 129 | C | 130 | а |
| 131 | a | 132 | a | 133 | a | 134 | a | 135 | b |
| 136 | b | 137 | С | 138 | d | 139 | b | 140 | с |
| 141 | a | 142 | a | 143 | a | 144 | C | 145 | a |
| 146 | d |     |   |     |   |     |   |     |   |

Uses of Carboxylic Acids and Their Derivatives

| 1 | b | 2 | C | 3 | a | 4 | C | 5 | с |
|---|---|---|---|---|---|---|---|---|---|
| 6 | d |   |   |   |   |   |   |   |   |

# **Critical Thinking Questions**

| 1  | а | 2  | b | 3  | d | 4  | c | 5  | a |
|----|---|----|---|----|---|----|---|----|---|
| 6  | b | 7  | а | 8  | d | 9  | а | 10 | d |
| 11 | С | 12 | b | 13 | c | 14 | d | 15 | C |
| 16 | C | 17 | с |    |   |    |   |    |   |

### **Assertion & Reason**

| 1  | а | 2  | c | 3  | c | 4  | b | 5  | c |
|----|---|----|---|----|---|----|---|----|---|
| 6  | е | 7  | C | 8  | е | 9  | е | 10 | а |
| 11 | C | 12 | b | 13 | a | 14 | С |    |   |



### General Introduction of Carboxylic Acids and Their Derivatives

- 1. (d) Methyl salicylate occurs in natural essential oils like winter green.
- 2. (d) Tartaric acid have the chiral carbon (\*) atom. So it is optically active.

$$H - C^* - COOH$$

$$H - C^* - COOH$$

$$H - C^* - COOH$$

$$OH$$

$$Tartaricacid$$

~ \*\*

**3.** (c) Formula of palmitic acid is  $C_{15}H_{31}COOH$ .



4. (d) Amide group represent by the formula  $-CONH_2$ 

5. (a) 
$$Cl - CH_2 - CH_2 - COOH_3$$
  
3 chloro propanoic acid

- 7. (d) Soaps are sodium salt of fatty acids *e.g.*  $C_{17}H_{35}COONa$ Sodium Steariate acid.
- 8. (c)  $R CONH_2$   $(RCO)_2 NH$ Primary amide Secondary amide

11.

(a)

9. (c) CHOHCOOH is known as tartaric acid and its potassium CHOHCOOH salt is known as Tartaremetic.

 $\begin{array}{c} \zeta^O_{\parallel} & O^-\\ R - C & OH \leftrightarrow R - C - O \cdots H \end{array}$ 

12. (c) 
$$CH_3 - C - CH_2 - C - O - C_2H_5 \Rightarrow$$

$$CH_{3} - C = CH - C - O - C_{2}H_{5}$$
(enolic form)

33.

2.

4

6

**CLICK HERE** 

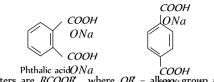
**13.** (d) 
$$2RCOOH \xrightarrow{-H_2O} (RCO)_2O$$
  
Acidanhydride

14. (d) 
$$HOOC - CH_2 - CH_2 - COOH$$

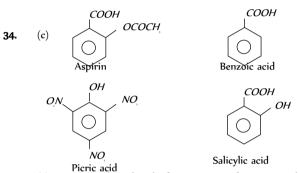
It is citric acid consist three carboxylic group.

- **16.** (c) Wax are long chain ester.
- 17. (d) Glycine do not have the chiral carbon so it is not optically active acid.

$$H_{2}N - C - COOH$$


$$H_{1}$$
(Glycine)

- 18. (d) Except phenyl acetic acid all rest acid are fatty acid.
- **19.** (c) Vinegar contain 8-10% acetic acid.
- **20.** (b,d) General formula of monocarboxylic acid is  $C_n H_{2n+1} COOH$  or  $C_n H_{2n} O_2$ .
- **21.** (a) Formula of Acetamide is  $CH_3CONH_2$  which consist single oxygen atom.
- (a) Urea behaves as a monoacidic base and react with nitric acid and form sparingly soluble nitrate.
- (c) Fats and oil jointly known as lipid which are the ester of glycerol with high fatty acid.
- **26.** (b) Urea is the diamide of carbonic acid.


$$\begin{array}{c} O \\ \parallel \\ HO - C - OH + 2NH_3 \xrightarrow{-H_2O} H_2N - \stackrel{O}{\underset{\text{Urea}}{\overset{\square}{\longrightarrow}}} H_2N - \stackrel{O}{\underset{\text{Urea}}{\overset{\square}{\longrightarrow}}} H_2N + O \\ \end{array}$$

So two mole of  $N\!H_3\,$  required that why it is the diamide of carbonic acid.

(c) Phthalic acid is the isomer of 1, 4 benzene dicarboxylic acid because both have the same molecular formula but differ in their structure.



- **28.** (d) Esters are RCOOR, where OR = 1, alkowy request and <math>R = H or alkyl or aryl group.
- **29.** (a) Soaps are the sodium or potassium salts of higher fatty acids.
  - (d) Vinegar is the diluted solution of acetic acid  $(CH_3COOH)$ . It is formed by the fermentation of ethyl alcohol in the presence of enzyme acetobacter.



- 35. (a) Acetic acid is the chief constituent of vinegar and hence its name (Latin : acetum = vinegar).
- 36. (b) Phenol was discovered by Runge in the middle oil fraction of coal-tar distillation and named it 'carbolic acid' (carbo-coil, oleum = oil) or phenol containing 5% water in liquid at room temperature and it is termed as carbolic acid.
- (a) Any electron withdrawing substituent (having-l-effect) stabilises the anion by dispersing the negative charge and therefore, increases the acidity. Chlorine is an electron withdrawing group.
- 38 (d) The order of reactivity of acid derivatives towards different reactions decreases in the order,

 $RCOCl > (RCO)_2 O > RCOOR' > RCONH_2$ 

In other words, the reactivity decreases as the basicity of the leaving group increases i.e.,

 $Cl^- < RCOO^- < RO^- < NH_2^-$ 

#### Preparation of Carboxylic Acids and Their Derivatives

 $\textbf{i.} \qquad (\textbf{d}) \quad CH_3CH_2NO_2 + H_2O \xrightarrow{H_2SO_4} \rightarrow$ 

 $CH_{3}COOH + NH_{2}OH$ 

🕀 www.studentbro.in

(a) 
$$HCOOH + PCl_5 \rightarrow HCOCl_{3} + HCl_{5}$$
  
Formul chloride

(c) 
$$2CH_3CHO \xrightarrow{Al(OC_2H_5)_3} CH_3CH_2OH$$

$$+CH_{3}COOH \rightarrow CH_{3}COOC_{2}H_{5}+H_{2}O_{\text{Ethylacetate}}$$

5. (c) 
$$CH_3CHO \xrightarrow{K_2Cr_2O_7} CH_3COOH_{H_2SO_4}$$

**6.** (a) 
$$C_2H_5OH \xrightarrow{\text{Acetobacter}} CH_3COOH$$

7. (a)  $CO + NaOH \xrightarrow{\Delta} HCOONa$ 

9. (a) 
$$CH = CH \xrightarrow{1\% Hg^{+2}}_{H_2SO_4} CH_3 - CH < OH_{OH}_{Unstable}$$
  
 $\rightarrow CH_3CHO \xrightarrow{[O]} CH_3COOH_{acetic acid}$ 

10. (b) Reimer-Tiemann reaction involves a carbene intermediate.

$$(d) \quad CH_{3}Cl \xrightarrow{KCN}{-KCl} CH_{3}CN \xrightarrow{H}{Cl} CH_{3}COOH + H_{2}O + CH_{3}COOH + CH_{3}COOH + CH_{3}COOH + CH_{3}COOH + CH_{3}COOH + H_{2}O + CH_{3}COOH + CH_{3}COOH$$

15. (a) 
$$\begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} > C = O \xrightarrow{NaCN} CH_{3} \\ COOH \end{array}$$

 $H_2SO_4$ 

16. (c) 
$$\begin{array}{c} CH_3COOH \\ CH_3COOH \end{array} + P_2O_5 \rightarrow \begin{array}{c} CH_3 - CO \\ CH_3 - CO \end{array} \rightarrow O + H_2O \end{array}$$

- $\underbrace{COOH}_{\text{Glycerol,}110^{\circ}C} \rightarrow HCOOH + CO_2$ 17. (c) COOH Decarboxylation
- 18.  $CH_3COOH + CHCl_3 \rightarrow Noreaction$ (a)

19. (c) 
$$CH_{,} \xrightarrow{V_2O_5} OCOH_{COOH}$$

21. (a) Aerialoxidation 
$$COH$$
  
Naphthalene Phthalic acid  
22. (b)  $C_6H_5MgBr \xrightarrow{(i)CO_2}{(i)H_3^+O} C_6H_5COOH$ 

(b) Acetic acid freezes at  $16.6^{\circ}C$  while water freezes at  $0^{\circ}C$ . So 23. glacial acetic acid is obtained by crystallizing, separating and melting acetic acid.

**25.** (c) 
$$C_2H_5OH + CH_3COOH \xrightarrow{\text{Conc}} CH_3COOC_2H_5$$

It is called esterification reaction.

**26.** (d) 
$$2NH_4Cl + KCNO \rightarrow NH_2 - CO - NH_2 + KCl$$
Ammonium
chloride
Virea
Urea

**28.** (b) 
$$RCOOH + C_2H_5OH \xrightarrow{\text{dry}} RCOOC_2H_5 + H_2O$$

**29.** (a) 
$$CO_2 + C_3H_7MgBr \xrightarrow{\text{Hydrolysis}}$$

31

**32.** (a) 
$$CH_3 - CO - NH_2 \xrightarrow{Hydrolysis} CH_3COOH + NH_3$$
  
Acetamide

**33.** (b) 
$$CH_3MgI + CI - C - OC_2H_5 \rightarrow \begin{bmatrix} OMgI \\ | \\ CI - C - OC_2H_5 \\ | \\ CH_3 \end{bmatrix}$$

$$\rightarrow CH_3 - C - OC_2H_5 + Mg \leq I^B I$$
  
Ethylacetate

 $CH_3COONa + CH_3COCl \rightarrow NaCl + CH_3COOCOCH_3$ 34. (c) Acetyl chloride Sodium Acetic anhydride acetate

**35.** (a) 
$$CH_3COONH_4 + CH_3COOH \xrightarrow{110^{\,o}C} \rightarrow$$
  
Ammonium acetate

 $CH_3CONH_2 + H_2O$ Acetamide

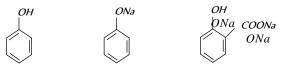
36. (b) 
$$2RCHO \xrightarrow{Al(OC_2H_5)_3} CH_3 - C - O - CH_2 - CH_3$$
  
37. (b)  $RCOOAg + R'I \rightarrow RCOOR' + AgI$ 

7. (b) 
$$R COOAg + R^{-}I \rightarrow R COOR + Ag I$$
  
ester

(c) When  $Cl_2$  or  $Br_2$  is react with carboxylic acid in the 38. presence of red phosphorus then lpha-hydrogen of carboxylic acid is replaced by  $Cl_2$  or  $Br_2$ 

$$\begin{array}{ccc} CH_{3}COOH & \xrightarrow{Br_{2}} & CH_{2}BrCOOH \\ Aceticacid & & \alpha-bromo \ acetic \ acid \end{array}$$

This reaction is known as Hell Volhard Zelinsky reaction.


Tertiary alcohol are not oxidised easily but on drastic (b) 39. conditions, these oxidise to give first ketone and then acid by losing one carbon at each step

$$\underset{R}{\overset{R}{\Rightarrow}} C - OH - \underset{R}{\overset{[O]}{\longrightarrow}} \underset{R}{\overset{R}{\Rightarrow}} C = O - \underset{[O]}{\overset{[O]}{\longrightarrow}} R.COOH$$

When succinic acid is heated it forms. Succinic anhydride 40. (a)

$$\begin{array}{c} CH_2COOH \\ \downarrow \\ CH_2COOH \\ CH_2COOH \\ Succinic acid \\ \end{array} \xrightarrow{(CH_2CO)} O \\ CH_2CO \\ Succinicanhydride \\ CH_2CO \\ CH_2$$

(d) Treatment of sodium salt of phenol with  $CO_2$  under pressure bring about substitution of the carbonyl group -COOH, for the hydrogen of the ring. This is called as Kolbe's reaction



Get More Learning Materials Here :

**CLICK HERE** >>>

41.

# 🕀 www.studentbro.in

$$+NaOH \rightarrow \qquad \xrightarrow{CO_2} 140^{\circ}C(4-7 \text{ atm})$$

Sodium salt of phenol Phenol Sodium salicylate

Salicylic acid

When an acyl halide is heated with acid salt, anhydrides are 42. (b) formed

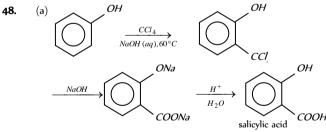
1

$$CH_3COONa + CH_3COCl \xrightarrow{\Lambda} (CH_3CO)_2O$$
  
acetic anhydride

+ NaCl

(b) CO<sub>2</sub> adds to Grignard's reagent to yield acids. 43.

$$CO_{2} \xrightarrow{CH_{3}M_{g}I} CH_{3}COOM_{g}I \xrightarrow{H.OH} CH_{3}COOH + Mg \xrightarrow{OH}_{I}$$

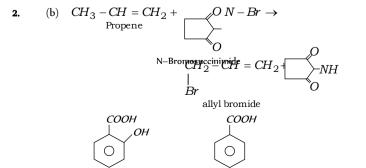

(a) Amide, on treating with  $HNO_2$ , give acids. 44.

$$CH_3CONH_2 \xrightarrow{NaNO_2/HCl} CH_3COOH + N_2 + H_2O$$
  
(HNO<sub>2</sub>) acetic acid

(b) Aldehydes are easily oxidised to carboxylic acids on treatment 45. with common oxidising agents like nitric acid, potassium permanganate and dichromate etc.

**46.** (d) 
$$(M_{1} \times M_{1} \times M_{2} \times M$$

47. (c) This is an example of Perkin's reaction. Therefore, (X) is Acetic anhydride.




The above given reaction is known as Reimer- Tiemann reaction.

(a)  $C_2H_5OH \xrightarrow{[O]} CH_3COOH$ . 49.

### Properties of carboxylic acids and Their derivatives

 $BrCH_2CH_2COOH$  is least acidic or has less  $K_a$  *i.e.*, 1. (c) dissociation constant. It is (a) due to lesser -1 effect of Br than *F* and (*b*) *Br* atom further away form -COOH group.



Benzoic acid

3.

4.

5.

(d)

(b) 
$$2CH_3COOH \xrightarrow{MnO} CH_3COCH_3 + CO_2 + H_2O_3$$

(d) Presence of -1 effect chlorine atom increases the acidic nature by withdrawing electrons -Cl\_CCOOH > Cl\_CHCOOH < Cl\_CH COOU > CU COOU

Zn Pdr

$$l_3$$
CCOOH >  $Cl_2$ CHCOOH >  $Cl - CH_2 - COOH$  >  $CH_3$ COOH  
Trichloroacetic Dichloro aceticacid Monochloro aceticacid Aceticacid (Lexicacid Chevicacid)

- 8. (b) The reaction of acetamide with water is an example of hydrolysis.
- 9. Methanoic acid resemble with aldehyde due to its structure. So (a) 0

it reduce fehling reagent. 
$$H - C - OH$$

$$\begin{array}{c} O \\ \blacksquare \\ (a) \quad R - \overset{\parallel}{C} - R' \xrightarrow{LiAlH_4} R - CH_2OH + R'OH \\ Two units of alcohols \end{array}$$

12. (d) 
$$OCH$$
  
Anisol  $HI \rightarrow CH_3I +$   
Anisol  $HI \rightarrow CH_3I +$   
Methyl  
Iodide Phenol

**13.** (b) 
$$CH_3COOH + CH_3 - Mg - X \rightarrow CH_3 - CH_3$$

(b) Forms H-bonding by means two highly electronegative atoms 14. present in it.

**15.** (d) 
$$CH_3CH_2CONH_2 \xrightarrow[Hofmann bromamide]{Br_2/KOH} CH_3CH_2NH_2$$
  
Propionami de reaction Ethylamine

16. (b) 
$$CH_3COOCH_3 \xrightarrow{NaOH} CH_3COONa \xrightarrow{NaOH} CH_3COONa$$
  
Methylethanoate  $CH_3 - CH_3 \xleftarrow{Kolbe's electrolyis} CH_3 - CH_3 \xleftarrow{Kolbe's electrolyis}$ 

**17.** (c) 
$$NH_4CNO \xrightarrow{\Delta} NH_2 - CO - NH_2$$
  
Ammonium cyanate Urea

$$NH_2 - CO - NH_2 + H - NH - CO - NH_2 \xrightarrow{\Delta}_{\text{Urea}}$$

$$NH_2 - CO - NH - CO - NH_2$$
  
Biuret

(d)  $F - CH_2 - COOH > Cl - CH_2 - COOH >$ 19.

$$Br - CH_2 - COOH > CH_3COOH$$

(d) Formic acid resemble with aldehyde due to its structure so it 20. reduce Tollen's reagent. 0

(b) 
$$HCOOH \xrightarrow{conc.H_2SO_4} CO + H_2O$$
  
 $COOH \xrightarrow{COOH} COOH$   
(b)  $HCOOH \xrightarrow{conc.H_2SO_4} CO + H_2O$ 

22.

23.

# 🕀 www.studentbro.in

 $+H_2O$ 

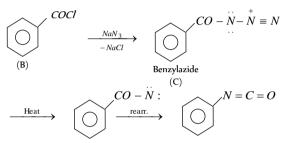
SOH

m-sulpho

benzoic acid

Get More Learning Materials Here :

Salicylic acid


- 24. (d)  $CHF_2 COOH$ . Difluoroacetic acid is strongest because presence of two F atoms increases its acidic nature.
- **25.** (c)  $CH_3COOH$  does not give silver mirror test.

**26.** (c) 
$$2CH_3COOH \xrightarrow{MnO} CH_3COCH_3 + CO_2 + H_2O$$
  
Acetone

- **27.** (b)  $CH_3COOH$  is slightly ionised than  $H_2SO_4$  .
- 28. (c) Presence of methyl group decreases the acidic character of acetic acid due to positive inductive effect (+*I*).

**29.** (c) 
$$\begin{array}{c} CH_3CO \\ CH_3CO \end{array} > O + 2NH_3 \rightarrow CH_3CONH_2 + CH_3COONH_4 \\ Acetamide \\ Ammonium acetate \end{array}$$

**30.** (c) 
$$(A)$$
  $(A)$   $(A)$   $(A)$ 



Benzyl nitrene Phenyl isocyanate (D)

32. (c) 
$$CH_3COOH \xrightarrow{\text{DAH}_4} CH_3CH_2OH$$
  
 $CH_3CH_2OH \xrightarrow{I_2/NaOH} CHI_3 \xrightarrow{Ag} C_2H_2$   
34. (c)  $HCOOH + 2Cu^{+2} \xrightarrow{\text{Fehling}} Cu_2O + H_2O + CO_2$ 

34. (c) 
$$HCOOH + 2Cu^{+2} \xrightarrow{\text{reming}} Cu_2O + H_2O + CO_2$$
  
Solution  $Red_{ppt}$ 

Whereas  $CH_3COOH \xrightarrow{\text{Fehling}}$  No reaction

**35.** (d)  $HCOOH + NaHCO_3 \rightarrow HCOONa + H_2O + CO_2$ 

 $HCHO + NaHCO_3 \rightarrow No$  reaction

**37.** (d) 
$$CH_3 - C < O = HO OH = O = C - CH_3.$$

Due to H-bonding

**38.** (c) 
$$CH_3COOH + NaHCO_3 \rightarrow CH_3COONa + H_2O + CO_2$$

39. (c) Acetic acid forms dimer in benzene due to which molecular mass becomes doubles.

**42.** (b) 
$$CH_3COOH \xrightarrow{I_2/\operatorname{Red} p} CH_2Cl - COOH$$

44. (c) 
$$CH_3COOH \xrightarrow{\Delta/P_2O_5} (CH_3CO)_2O$$

**47.** (c) 
$$\begin{array}{c} COOH \\ \mid \\ COOH \end{array} + KMnO_4 + H_2SO_4 \rightarrow 2CO_2 + H_2O \end{array}$$

$$+K_2SO_4 + MnSO_4$$

**CLICK HERE** 

≫

**49.** (c) 
$$R - X \xrightarrow{KCN} R - CN \xrightarrow{NaOH} R - COONa + NH_3$$

**52.** (b) N-acetyl paraamino phenol

f

- 53. (b) Because it does not have  $\alpha$ -hydrogen atom.
- **54.** (b) Molecular Mass increases due to dimer formation O

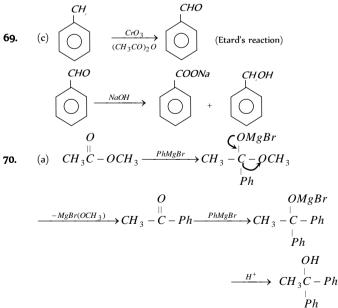
$$CH_{3}COOH \rightarrow CH_{3} - \overset{\parallel}{C} - OH \rightarrow$$

$$CH_{3} - C \overset{\bigcirc}{<} \overset{O-H-O}{O-H-O} \overset{\bigcirc}{>} C - CH_{3}$$
Dimer is formed

55. (d) 
$$H_2O \rightarrow O^+(dissociation)$$
  
In benzene solution  
 $COOH$ 

$$(a) = 2C + OH + 2Na \rightarrow 2C + ONa + H$$

**57.** (c) 
$$2C_2H_5OH + 2Na \rightarrow 2C_2H_5ONa + H_2$$
  
 $2CH_3COOH + 2Na \rightarrow 2CH_3COONa + H_2$ 


**59.** (c)  $CH_3 - CH_2 - CCl_2 - COOH$ ;  $\alpha$ ,  $\alpha$ -dichloro butanoic acid is most acidic. Hence it will easily loose  $H^+$  ions in solution.

**62.** (c) 
$$CH_3COOH \xrightarrow{NH_3} CH_3CONH_2 \xrightarrow{\Delta} CH_3 - C \equiv N$$

**63.** (b) 
$$CH_3COOH \xrightarrow{LiAlH_4} CH_3CH_2OH$$

**64.** (c) 
$$CH_3CONH_2 + NaOH \xrightarrow{\text{Boil}} CH_3COONa + NH_3$$
  
Acetamide

65. (b) 
$$CH_2 = CH - (CH_2)_5 COOH \xrightarrow{\text{Peroxide}} HBr$$
  
 $CH_2 - (CH_2)_6 - COOH$ 



1,1-diphenylethanol

# 🕀 www.studentbro.in

Get More Learning Materials Here : 📕

**72.** (b) 
$$2NH_2CONH_2 \rightarrow NH_2CONHCONH_2 + NH_3$$

74. (b) 
$$OH OCOCH$$
  
Salicylic acid  $COOH OCOCH_2SO_4 OCOCH_2SO_4$ 

**75.** (a) 
$$CH_3COOH + PCl_5 \rightarrow CH_3COCl + POCl_3 + HCl$$
  
Acid chloride

- **77.** (c) Alcohols react with acids to form esters which have fruity smell.
- **78.** (a) Acidity decreases with the decrease in electronegativity of halogen *i.e.*,

$$FCH_2COOH > ClCH_2COOH > BrCH_2COOH$$

**79.** (c) 
$$CH_3CONH_2 \xrightarrow{NaOBr} CH_3NH_2$$

- 80. (d) Formic acid, HCOOH shows reducing property.
- **81.** (a) *HCOOH* reduces ammoniacal silvernitrate solution, *i.e.*, Tollen's reagent but acetic acid does not.

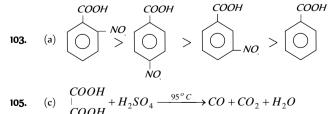
**85.** (b) 
$$C_6H_5COOC_2H_5 + NaOH \xrightarrow{\Delta}$$
  
Ethylbenzoate

$$C_6H_5COONa + C_2H_5OH$$
  
Sod. benzoate Ethanol

86. (b) 
$$CH_3 - CHOH - COOH + [O] \xrightarrow{KMnO_4} CH_3 - CO - COOH + H_2O$$

87. (d) 
$$RCOOH \xrightarrow{LIAIH_4} RCH_2OH$$
  
90. (d)  $C_6H_5COOCH_3 \xrightarrow{LIAIH_4}_{H_3O} + CH_3OH$ 

92. (d) ()  $+ NaOH \xrightarrow{CaO}$  () OH  $+ Zn \longrightarrow$  () + ZnO


соон

- 93. (c)  $3CH_3COOH + PCl_3 \rightarrow H_3PO_3 + 3CH_3COCl$
- 94. (b)  $CH_3COCl \xrightarrow{LiAlH_4} CH_3CH_2OH + HCl$

**98.** (a) 
$$CH_3 - CO - NH_2 \xrightarrow{P_2O_5} CH_3 - C \equiv N + H_2O_3$$

- **99.** (a) In this reaction  $\alpha$ -*H* is replaced by chlorine.
- **100.** (a) Urea are neutral in nature in aqueous solution.

102. (a) 
$$CH_3COOH + 4H \xrightarrow{HAIH_4} CH_3CH_2 - OH$$



106. (a) Due to intramolecular hydrogen bonding.

$$CH_3 - CO - NH_2 + HCl \rightarrow CH_3 CONH_3 Cl$$
  
Acetamidehydrogen  
chloride

$$2CH_3CONH_2 + HgO \rightarrow (CH_3CONH)_2Hg + H_2O$$
  
Mercuricacetamide

109. (d)   
(d)   

$$(a)$$
  
 $(a)$ 
  
 $(a)$ 

$$2CH_3COOC_2H_5$$

111.

114.

115.

Ethylacetate

(d) 
$$(d) \xrightarrow{COOH} COOH$$

- 112. (b) Benzene sulphonyl chloride is called Hinsberg's reagent.
  - (a) CHCOOH: CICHCOOH: CICHCOOH: CICCOOH Increasing order of acidic nature.

Electron withdrawing group, increases the acidity of benzoic acid, O-isomer will have higher acidity then corresponding m and p-isomer due to ortho effect.

**116.** (c) 
$$CH_3COOC_2H_5 + NaCl_{(aq)} \rightarrow \text{no reaction}$$

$$(CH_3COOC_2H_5 + NaCl_{(aq)})$$

117. (c) 
$$COH + Br_2 \xrightarrow{Fe} OH + HBr$$
  
-COOH is meta directing group

**118.** (d)  $R - COOR' + R''OH \stackrel{H^{\oplus}}{\longrightarrow} R COOR'' + R'OH$ The exchange of alcohol residue known as alcoholysis or trans esterification

**ii9.** (b) 
$$R COOH + PCl_5 \rightarrow R COCl + POCl_3 + HCl \xrightarrow{KCN} \rightarrow$$

$$R COCN + KCl \xrightarrow{2H_2O} R CO COOH + 2NH_3$$

$$\xrightarrow{\text{Zn-Hg}/Conc.} HCl \xrightarrow{RCH_2COOH + H_2O}$$

120. (b)  $CH_3COOH + Cl_2 \rightarrow CH_2ClCOOH + HCl$   $CH_3COOH + PCl_5 \rightarrow CH_3COCl + POCl_3 + HCl$   $CH_3COOH + SOCl_2 \rightarrow CH_3COCl + SO_2 + HCl$  $3CH_3COOH + PCl_3 \rightarrow 3CH_3COCl + H_3PO_3$ 

121. (a) 
$$C_6H_5COOC_2H_5 + KOH(alc) \rightarrow C_6H_5COOK + C_2H_5OH \xrightarrow{HCl} C_6H_5COOH + KCl$$

122. (c)  $ROH + PCl_5 \rightarrow R - Cl + POCl_3 + HCl$  $RCOOH + PCl_5 \rightarrow RCOCl + POCl_3 + HCl$ 



- (a) It is picric acid because it has three  $-NO_2$  group are 123. arranged which are ortho and para position
- Benedict solution is readily reduced by aldehyde. It does not (d) 124. oxidise anhydrides

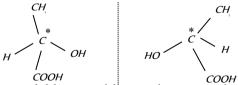
125.

(c)

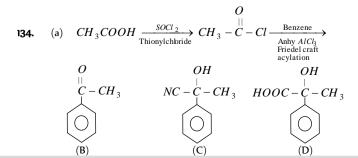
Aceticacid

$$CH = CH + CH_{3}COOH \xrightarrow{[Hg^{2+}]}$$

$$H_{2}C = CH - OCOCH_{3} \xrightarrow{CH_{3}COOH}$$
Vinylacetate
$$CH_{3} - CH(O - COCH_{3})_{2}$$
Ethylideneacetate


This reaction is an example of addition reaction.

When acetic acid is reacted with  $PCl_5$  the product formed 126. (a) are acetyl chloride, phosphoryl chloride and hydrochloric acid  $CH_3COOH + PCl_5 \rightarrow CH_3COCl + HCl + POCl_3$ 


**128.** (b) 
$$O = C < \underbrace{NH_2}_{NH_2} \xrightarrow{HOH} O = C < \underbrace{OH}_{OH} + NH_3 \uparrow$$
  
Carbonic acid(unstable)  
 $CO + HO$ 

129. (c) 
$$H_3CC \ll \stackrel{H}{O} \xrightarrow{HCN} CH_3 - \stackrel{CN}{C} \ll \stackrel{H}{OH} \xrightarrow{H.OH}$$

- Vinegar is 6 10% aqueous solution of acetic acid 130. (a)
- All esters are pleasant liquid having pleasant fruity smell. Many 131. (a) of them are used in perfurmery, e.g. Benzyl acetate etc.
- Lactic acid has one asymmetric (chiral) carbon atom, hence it 132. (a) has (2' = 2) optical isomers.



4-methyl benzene sulphonic acid is stronger than acetic acid 133. (a) thus it will release acetic acid from sodium acetate.



$$\xrightarrow{H^+CN^-} \xrightarrow{H_2O}$$
nucleophilic addition

**135.** (b) 
$$C_6H_5CHO + HCN \rightarrow C_6H_5 - C - CN$$
 is optically active.

step 1 
$$CH_3CO_2C_2H_5 \xrightarrow{NaOC_2H_5} CH_3COCH_2COOC_2H_5} (A)$$
  
 $(A)$   
 $(A)$   

**38.** (d) 
$$CHCONHCH_{A} \xrightarrow{Zn-H_{g}/} CHCHNHCH_{HCl}$$

This reaction is known as Clemmenson reduction.

(b)  $K_a \propto \frac{1}{pK_a}$ ; The value of  $K_a$  is highest for *HCOOH*. 139.

140. (c) 
$$X \xrightarrow{NaOH/CaO} C_2H_6$$
  
 $C_2H_5COOH \xrightarrow{NaOH/CaO}$ 

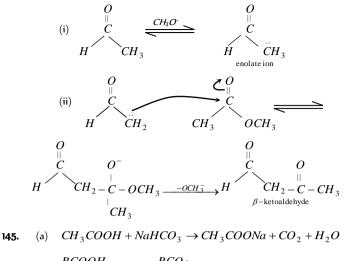
$$C_2H_5COOH \xrightarrow{\text{NAOH}/\text{CaO}} C_2H_6$$
  
propionic acid ethane

- 141. (a) Glycine is a amphoteric acid as it contains both acidic as well as basic groups.
- 142. Cinnamic acid reacts with bromine in carbon tetrachloride to (a) give dibromocinnamic acid.

$$Br \quad Br$$


$$C_{6}H_{5}CH = CHCOOH + Br_{2} \xrightarrow{CCl_{4}} C_{6}H_{5}CH - CHCOOH$$
dibromocinnamic acid

143. (a) OF all the acid derivatives, acid chlorides, i.e.  $CH_3COCl$  is most reactive.


> The order of reactivity of acid derivatives decreases in the following order,

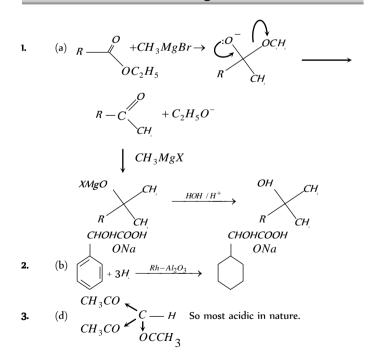
 $RCOCl > (RCO)_2 O > RCOOR > RCONH_2$ .

(c) Reaction can be explained as follows 144.



# 🕀 www.studentbro.in




**146.** (d) 
$$\xrightarrow{RCOOH} \xrightarrow{P_2O_5} \xrightarrow{RCO} O + H_2O$$

 $P_2O_5$  acts as a dehydrating agent.

#### **Uses of Carboxylic Acids and Their Derivatives**



#### **Critical Thinking Questions**



**4.** (c) Anion  $HCOO^-$  has two resonating structure (identical).

$$\begin{array}{c} \mathbf{\zeta}_{\parallel}^{O} & O^{-} \\ H - C - O^{-} \leftrightarrow H - C = O \end{array}$$

5.

6.

7.

8

9.

11.

12.

13.

14.

15.

17.

**CLICK HERE** 

(a) Since a single alkyl halide is formed on treatment with *HI*, it must be a symmetrical ether *i.e.*, ethoxyethane.

$$C_2H_5OC_2H_5 + 2HI \rightarrow 2C_2H_5I + H_2O$$

(b) 
$$CH_2 = CH - COOH \longrightarrow$$
  
 $CH_2 = CH - CH_2OH + H_2O$ 

(a) 
$$CH_3COOH + PCl_5 \rightarrow CH_3COCl \xrightarrow{C_6H_6} anh.AlCl_3$$
  
 $C_2H_5$   
 $CH_3COC_6H_5 \xrightarrow{C_2H_5MgBr} CH_3 - C(OH)C_6H_3$ 

(a) 
$$R - CH_2CH_2OH \xrightarrow{PBr_3} R - CH_2CH_2 - Br$$
  
 $\xrightarrow{KCN} R - CH_2 - CH_2 - CN \xrightarrow{H_3O^+}$ 

 $R - CH_2 - CH_2COOH + NH_3$ 

**10.** (d)  $CH_3CH_2COOH(aq) + NaHCO_3(aq) \rightarrow$ Propionic acid sod. bicarbonate

$$CH_3CH_2COONa + CO_2 + H_2O$$

~~~~

(c) 
$$+SOCl_2 \rightarrow$$
  $+SO_2 + HCl_2$   
Benzoic acid  $+SOcl_2 \rightarrow$   $+SO_2 + HCl_2$ 

(b) -COOH and -OH group form the hydrogen bond by which they have high boiling point. -COOH group show strong hydrogen bonding so it form dimer and have more boiling point than -OH group. While -CHO group do not form hydrogen bond. Thus the reactivity order are as 3 > 1 > 2.

~~~~

- (c)  $CaC_2O_4$  is a salt of oxalic acid which is more acidic than acetic acid, so it is insoluble in acetic acid.
- (d) –COOH and  $COCH_3$  are meta directing group due to the O

presence of  $-C^-$ , similarly *CN* is also meta directing due to the presence of multiple bond while *NHCOCH*<sub>3</sub> is ortho/para directing group because of less electron density over  $O_{\parallel}$ 

$$-C - \text{group.}$$

(c) lodoform test is given by all the compounds having  $CH_3 - C -$  or  $CH_3 - C -$  group.

**16.** (c) 
$$C_2H_5 - C - CH_3 + I_2 + NaOH \to C_2H_5CO_2^-Na^+ + CHI_3$$

$$C_2H_5CO_2^-Na^+ \xrightarrow{H^+} C_2H_5COOH + Na^+$$

(c) Formic acid can not be prepared by grignard's reagent. Higher acids are prepared by the reaction of  $CO_2$  on grignard's reagent

$$\overset{\delta^{-}}{R} \overset{\delta^{+}}{Mg} X + \overset{\delta^{+}}{C} \ll \overset{O\delta^{-}}{O\delta^{-}} \rightarrow \overset{R-C-O}{Mg} X \xrightarrow{H.OH} \overset{H.OH}{\longrightarrow} \overset{O}{O\delta^{-}} \overset{O}{\rightarrow} \overset{H}{O} X \xrightarrow{H.OH} \overset{H}{\rightarrow} \overset{H}{O} X \xrightarrow{H.OH} \overset{H}{\rightarrow} \overset$$

🕀 www.studentbro.in

$$O \\ R - C - OH + Mg(OH)X$$

9.

13.

#### Assertion & Reason

 (a) Carboxylic acid exist as dimer due to the formation of hydrogen bonding.

$$R - C \stackrel{=}{\searrow} O - H - O \stackrel{=}{\searrow} C - R$$

H- bonding (dimer)
 C) Trichloro acetic acid is stronger than acetic acid because the electron withdrawing group withdraw electrons from the carboxylate base and thus increasing the acid strength.

$$Cl \quad O \qquad O \\ Cl - C \leftarrow C \leftarrow OH \qquad CH_3 \rightarrow C \rightarrow OH \\ Cl \qquad - I \text{ effect} \qquad + I \text{ effect} \\ (Stronger acid) \qquad (Weaker acid)$$

- (c) Carboxylic acids (RCOOH) dissolves in water due to hydrogen bonding between *H*-atom of -COOH group and *O*-atom of water. As alkyl portion *R*-is non polar and lyophobic, this effect predominates as -R gets larger (over five carbon atoms).
- **4.** (b) As carboxylic acids are resonance stabilized they do not contain true carbonyl group as is present in carbonyl compounds.

$$: \overset{\textcircled{old}}{O}: \qquad : \overset{\r{old}}{O}: \quad : \overset{\r{old}$$

5. (c) Formic acid is stronger than acetic acid

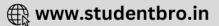
3

$$\begin{array}{rcl} H-C-OH & \rightleftharpoons & H-C-O^-+H^+ \\ & & || \\ O & & O \\ CH_3-C-OH & \rightleftharpoons & CH_3-C-O^-+H \\ & & || \\ O & & O \end{array}$$

Presence of  $CH_3$  group in acetate ion shows +*l.E*, and there

by intensifying charge on  $O^-$  of acetate ion than formate ion or acetate ion is destabilized. Thus formate ion is more stable than acetate ion or HCOOH loses proton more easily than  $CH_3COOH$ .

- 6. (e) Both fumaric and maleic acids have two ionisable  $H^+$  *i.e.* protons. The maleate monoanion shows intramolecular *H*-bonding and thus requires more energy to give maleate dianion. It is therefore second dissociation of fumaric acid is more than maleic acid since former does not show intramolecular *H*-bonding.
- (c) Larger is the size of alkyl group of ester, greater is the steric effect and thus lesser will be rate of hydrolysis.


$$\begin{array}{c} O & O \\ CH_{3} - \overset{||}{C} + OH^{-} \xrightarrow{\text{fast}} CH_{3} - \overset{||}{C} - OH \xrightarrow{H^{+}} \\ O CH_{3} & O CH_{3} \\ CH_{3} COOH + CH_{3}OH \\ CH_{3} - \overset{||}{C} + O\overline{H} \xrightarrow{\text{slow}} CH_{3} - \overset{||}{C} - OH \xrightarrow{H^{+}} \\ O C_{4}H_{9} & O \\ CH_{3} COOH + C_{4}H_{9}OH \end{array}$$

- (e) The melting point of an aliphatic carboxylic acid containing an even number of carbon atoms is higher than the next lower and next higher homologue containing odd number of carbon atoms.
  - (e) Electron withdrawing groups increase the acidity of carboxylic acids by stabilising the conjugate base through delocalisation of the negative charge by inductive and resonance effects.
- **10.** (a) The larger the electron withdrawing inductive effect the greater is the acidity.
- (c) In aminoacetic acid, NH<sub>2</sub> group is electron repelling in nature.
- 12. (b) Boiling points of carboxylic acids are higher due to their tendency to associate and form dimers to a greater extent by hydrogen bonding.
  - (a) Both formic acid and oxalic acid behave as reducing agent and decolourise acidified  $KMnO_4$  solution.

 $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4$ 

$$+3H_2O + 5[O]$$

14. (c) Esters containing α – hydrogens on treatment with a base form a carbanion which brings about nucleophilic acyl substitution at the carbonyl group of the other molecule of the ester to form β – keto esters.



| Which of the following is the v                                    | weakes   | acid                         | [CPMT 2001]              |          | (a)            | Ionic bond                                             |              |                         |                       |
|--------------------------------------------------------------------|----------|------------------------------|--------------------------|----------|----------------|--------------------------------------------------------|--------------|-------------------------|-----------------------|
| ОН                                                                 |          |                              |                          |          | (b)            | Covalent bond                                          |              |                         |                       |
|                                                                    | (1)      |                              |                          |          | (c)            | Coordinate bond                                        |              |                         |                       |
| (a)                                                                | (b)      | СН <sub>3</sub> СООН<br>СООН |                          |          | (d)            | Intermolcular hydrogen                                 | bond         |                         |                       |
| (c) HCOOH                                                          | (d)      |                              |                          | 10.      |                | colourless organic compo<br>ture of sodium nitrite and | 0            |                         |                       |
|                                                                    |          |                              |                          |          |                | _1                                                     |              |                         | [CPMT 197             |
| Pyruvic acid is obtained by                                        |          | ~                            | [AFMC 1995]              |          | (a)            | Glucose                                                | (b)          | Oxalic acid             |                       |
| (a) Oxidation of acetaldehyde                                      | cyanoł   | ıydrin                       |                          |          | (c)            | Urea                                                   | (d)          | Benzoic acid            |                       |
| (b) Oxidation of acetone cyan                                      | ohydrii  | 1                            |                          | 11.      |                | at is formed when be<br>sence of sodium hydroxid       | 2            | oride reacts with       | n aniline<br>[BHU 199 |
| (c) Oxidation of formaldehyde                                      | e cyano  | hydrin                       |                          |          | (a)            | Acetanilide                                            | (b)          | Benzanilide             | [                     |
| (d) None of these                                                  |          |                              |                          |          | (c)            | Benzoic acid                                           | (d)          | Azobenzene              |                       |
| The product obtained by dry                                        | / distil | lation of calcium            | n formate on             | 12.      | . ,            | ong acid among the follow                              | ( )          |                         |                       |
| reacting with ammonia yields                                       | (1)      | A . 1                        |                          |          |                | 0 0                                                    | C            | MT 1992; AFMC 199       | 8; BHU 200            |
| (a) Formamide                                                      | (b)      | Acetamide                    |                          |          | (a)            | CF <sub>3</sub> COOH                                   | -<br>(b)     | CBr <sub>3</sub> COOH   |                       |
| <ul><li>(c) Acetaldehyde ammonia</li><li>In the reaction</li></ul> | (a)      | Urotropine                   |                          |          | (c)            | СН 3СООН                                               | (d)          | CCl <sub>3</sub> COOH   |                       |
| $C_8H_6O_4 \xrightarrow{\Delta} X \xrightarrow{NH_3}$              |          |                              |                          | 10       |                | birin is obtained by the re                            |              | 5                       |                       |
|                                                                    | 7        |                              |                          | 13.      | Asp            | on in is obtained by the re-                           |              | sancyne acid with       | [AFMC 199             |
| The compound $X$ is                                                |          | -                            | Qualifying 1998]         |          | (a)            | Acetone                                                | (b)          | Acetaldehyde            |                       |
| (a) Phthalic anhydride                                             | (b)      | Phthalic acid                |                          |          | (c)            | Acetyl chloride                                        | (d)          |                         |                       |
| (c) <i>o</i> -xylene                                               | (d)      | Benzoic acid                 |                          | 14       | . ,            |                                                        |              |                         |                       |
| Ethyl acetate reacts with $CH_3$                                   | MgBr     | to form                      |                          | 14.      | Uxa            | ilic acid when reduced wi                              | ui ziiic ai  |                         | 1 0000                |
|                                                                    |          |                              | [MP PET 1999]            |          | $(\mathbf{z})$ | Glyoxallic acid                                        | ( <b>b</b> ) | Glyoxal                 | adu CET 200           |
| (a) Secondary alcohol                                              | (b)      | Tertiary alcohol             |                          |          | (a)<br>(c)     | Glycollic acid                                         | (d)          | Glycol                  |                       |
| (c) Primary alcohol and acid                                       | • • •    | Acid                         |                          | 15       | , i            | istinctive and characterist                            | ( )          | 5                       | c                     |
| In quick vinegar process of ace                                    |          |                              | of mixture is[ <b>RI</b> | PMT 2003 |                |                                                        |              | [NCERT 1981;            |                       |
| (a) 300 K                                                          | (b)      | 427 K                        |                          |          | (a)            | A ketonic group                                        |              | [                       |                       |
| (c) 500 K                                                          | (d)      | 350 K                        |                          |          | (b)            | An ester group                                         |              |                         |                       |
| Formic acid can reduce                                             |          |                              | [CPMT 1987]              |          | (c)            | A peptide group                                        |              |                         |                       |
| (a) Tollen's reagent                                               | (b)      | Mercuric chlori              | de                       |          | (d)            | An alcoholic group                                     |              |                         |                       |
| (c) $KMnO_4$                                                       | (d)      | All of these                 |                          | 16.      | Wh             | ich substance will give an                             | nide when    | heated with <i>NH</i>   | 2                     |
| 0.2 gm of fine animal charcoal                                     | is mix   | ed with half litre           | of acetic acid           |          |                | 0                                                      |              |                         | ]<br>[CPMT 199]       |
| (-SM) solution and shaken for                                      |          |                              |                          |          | (a)            | Potassium                                              | (b)          | Hydrogen                |                       |
|                                                                    |          |                              | [BHU 1998]               |          | (c)            | Ethane                                                 | (d)          | Nitrogen                |                       |
| (a) The concentration of the s                                     | solution | decreases                    |                          | 17.      | ( )            | ich acid has least $pK_a$ v                            | ( )          |                         | [CPMT 198:            |
| (b) Concentration increases                                        |          |                              |                          | .,.      |                |                                                        |              |                         |                       |
| (c) Concentration remains sar                                      | ne       |                              |                          |          | (a)            | Cl <sub>3</sub> C.COOH                                 | (b)          | Cl <sub>2</sub> CH.COOH |                       |
| (d) None of these                                                  |          |                              |                          |          | (c)            | $Cl.CH_2COOH$                                          | (d)          | $CH_3COOH$              |                       |
| Dimerisation in carboxylic acid                                    | is due   | to                           | [KCET 2002]              |          |                |                                                        |              |                         |                       |







(SET -28)

1. (a) Phenol is a weaker acid than carboxylic acids.  
2. (a) 
$$CH_3 - C - H + HCN \rightarrow CH_3 - C - H \xrightarrow{H_2O} O$$
  
 $O OH$   
 $CH_3 - CH - COOH \xrightarrow{[O]} OH$   
 $OH O$   
 $OH O$   
 $OH$   
 $OH$   
 $OH$   
 $OH$   
 $O$   
 $OH$   
 $OH$   
 $O$   
 $OH$   
 $OH$   
 $O$   
 $OH$   
 $O$   
 $OH$   
 $OH$   
 $O$   
 $OH$   
 $OH$   
 $O$   
 $OH$   
 $OH$ 

$$6HCHO + 4NH_3 \rightarrow (CH_2)_6N_4 + 6H_2O$$
  
Urotropin

5. (b) 
$$CH_3 \overset{\parallel}{C} - O - C_2H_5 + CH_3M_gBr \rightarrow CH_3 - \overset{\vee}{C} - O - C_2H_5$$
  
Ethylacetate  $CH_3 - CH_3 -$ 

$$\xrightarrow{H_2O}_{-Mg \swarrow_{OH}} CH_3 \xrightarrow{C}_{-OH} CH_3 \xrightarrow{-H_2O}_{-H_2O} CH_3 \xrightarrow{H_2O}_{-C-CH_3} CH_3 \xrightarrow{C}_{-C-CH_3} CH_3 \xrightarrow{C}_{-C-OH} CH_3 \xrightarrow{C}_{-C-OH} CH_3 \xrightarrow{C}_{-C-OH} CH_3 \xrightarrow{C}_{-C-OH} CH_3 \xrightarrow{C}_{-C-OH} CH_3 \xrightarrow{C}_{-L-OH} CH_3 \xrightarrow{C}_{-L-O$$

6. (a) 
$$CH_3CH_2OH + O_2 \xrightarrow{Acetobacter} CH_3COOH + H_2O$$
  
 $\xrightarrow{300 K} 8-10\%$  aceticacid(vinegar)

7. (d) Tollen's reagent -  $HCOOH + Ag_2O \rightarrow CO_2 + H_2O + 2Ag_{(silver mirror)}$ 

Fehling solution –  $HCOOH + 2CuO \rightarrow CO_2 + H_2O + Cu_2O$ (Red ppt)

 $\begin{array}{l} \mbox{Mercury chloride} - \\ 2HCOOH + 2HgCl_2 \rightarrow 2CO_2 + 4HCl + 2Hg \\ ({\rm Black}) \end{array}$ 

- (a) Activated charcoal adsorbed the impurity of acetic acid by which the concentration of acetic acid solution decrease.
- (d) Intermolecular hydrogen bonding leads to dimerisation of carboxylic acid in non-aqueous solvents.

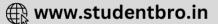
10. (c) 
$$NaNO_2 + HCl \rightarrow HNO_2 + NaCl$$

$$\begin{array}{c} H_2NCONH_2 + HNO_2 \rightarrow CO_2 + NH_3 + H_2O + N_2 \\ \\ \text{Urea} \end{array}$$

 $CO_2\;$  evolve with brisk effervescence.

**11.** (b) It is known as Schotten Baumann reaction.

$$\begin{array}{cc} C_6H_5NH_2 + ClCOC_6H_5 & \xrightarrow{NaOH} & C_6H_5NHCOC_6H_5 + HCl \\ \text{Aniline} & \text{Benzoyl chloride} & \text{Benzanilide} \end{array}$$


12. (a) Due to -I effect of three F atom  $CF_3COOH$  is a strong acid.

13. (d) 
$$OH$$
  
 $ONa$   $COOH$   
 $ONa$   
 $+ (CH,CO)O$   
 $Acetic anhydride$   
Salicylic acid  
 $Acetic anhydride$   
 $Acetic acid$ 

14. (c) 
$$\begin{array}{c} COOH \\ | \\ COOH \\ COOH \\ Oxalic acid \end{array} + 4[H] \xrightarrow{Zn} | \\ H_2SO_4 \\ H_2SO_4 \\ COOH \\ COOH \\ Glycolicacid \end{array} + H_2O$$

- 15. (b) Fat is the ester of higher acids & glycerol.
- $16. \qquad (a) \qquad 2K + 2NH_3 \rightarrow 2KNH_2 + H_2$
- **17.** (a)  $(Cl_3C COOH)$  Trichloroacetic acid has least *pka* value and is most acidic.



